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Abstract
GaN-HEMT (high-electron-mobility-transistor) power electronic 

applications require threshold voltage (Vth) controlling for safe operation. 
Electrical aspects including OFF-state leakage current, Vth, and forward operating 
current, all rely greatly on the work function of the gate metal (ϕm). In this paper, 
we examined the influence of ϕm variation (the design factor that supports 
normally off operation) on the electrical properties of recessed T-gated AlN/
GaN HEMT with AlGaN (Fe-doped) buffer. The simulation results show that the 
highest gate metal (GM) of 441.78 mS/mm, the peak ID of 1.002 A/mm, and 
high fT of 336.28 GHz is recorded for Mo-gate HEMT. As the values of ϕm are 
raised, then the Vth of the HEMT progressed in the right direction. This trend 
of Vth can be ascribed to the uplift of the conduction band (CB) in proportion 
to the increasing ϕm values. The findings imply that gate-engineering can be used 
to produce depletion-mode (D-mode) and enhancement-mode (E-mode) AlN/
GaN HEMTs at sub-100 nm regimes, enabling fail-safe future generation power 
electronics.
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Introduction
With inherent superlative physical attributes, GaN-HEMTs exhibit 

exceptional microwave power characteristics and meet the requirements of high-
speed performance [1-5]. Thus, GaN-HEMTs are being rapidly investigated 
due to their wide range of application domains such as commercial and military, 
radio astronomy, 5G/6G communications, photodetectors and laser diodes, 
SATCOM, sensors, RADARs, etc. [1-5]. The standard AlGaN/GaN (AG)-
HEMTs have shown good RF, DC and power performance in recent years. To 
uplift the performance of RF GaN-HEMT, research communities have been 
exploring different techniques such as ultrathin barrier, sub-100 nm tapered gate, 
scaling down drain-to-source spacing (LSD), T- gate technology, etc. Besides, gate 
length (LG) and gate-to- channel space (d) must be optimized to avoid SCEs 
(short channel effects). GaN-HEMT with high Al-content ultrathin AlGaN 
barrier suffer from strain problems and are prone to SCEs at sub-micron Lg 
due to suboptimal LG/d (aspect ratio) [5, 6]. Moreover, employing recessed gate 
approach to such devices is challenging, which predominantly causes substantial 
gate leakage and aids reliability problems [1-5]. Since the last few years, AlN/GaN 
HEMTs have drawn immense research interest and as a result of rapid exploration, 
emerged as a promising technology with remarkable achievements in terms of RF, 
DC and power performance attributable to high carrier-density (n

s
) of quantum-

well (QW) because of wide energy-gap (Eg) (= 6.2 eV) and high polarization 
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the gate also influences the performance of the HEMT. Using a 
T-shaped gate architecture is among the most prominent ways 
to improve electronic properties. In our design, the recessed 
T-gate features a 50 nm-wide footprint, a stem that is 75 nm 
tall, and a broad head measuring 250 nm. The gate- drain 
(LGD) and gate-source (LGS) separations are chosen as 500 nm 
and 250 nm, respectively. The gate has a fixed width (WG) of 
200 µm. The material parameters at 300 K and all the physical 
models adopted in this simulation can be found in [1]. Figure 2a 
and 2b depicts the TCAD simulation diagrams of the HEMT.

Results and Discussion
GaN-HEMTs entered the nanoelectronics regime to 

meet the continuous quest for improving RF performance. To 
overcome the physical and fundamental limitations of scaling 
down the transistor, GaN quantum-engineered HEMTs 
leverage on more innovative architectures, nanoengineered 
interfaces with minimal defects, design of confined quantum 
wells with nanoscale layers for efficient charge transport, 
incorporating gate structures with a nano-sized footprint, etc. 
[21-23]. The fabrication of GaN-HEMTs at the nanometer 
regime presents several significant challenges due to the 
inherently small dimensions and unique material properties 
of GaN. Achieving high material quality, precise control over 
nanoscale features, obtaining accurate doping profiles and 
concentrations are some of the key fabrication challenges that 
can be addressed by using epitaxial growth techniques such 
as MBE, MOCVD, PECVD, etc., advanced lithography 
techniques such as nanoimprint lithograph, optical-, UV-, 
and Deep UV lithography, etc., and the latest deposition and 
etching techniques [21-23]. Managing heat dissipation in 

(piezoelectric + spontaneous) of AlN binary material. As 
scaling of LG helps to outstretch operating frequency (fT), the 
unavoidable SCEs always cast a shadow on this approach [5, 
6]. On the other hand, including a back-barrier (BB) layer in 
the architecture of GaN-HEMT has become a supreme choice 
that aids RF behavior, in addition to combating the SCEs. 
A binary (AlN), ternary (AlGaN, InGaN, AlInN, BGaN, 
Pdiamond, etc.) or quaternary (InAlGaN) alloy metals can be 
used as a BB [1-9]. The difference in Eg values of BB layer and 
GaN channel gives rise to CB offset at the BB/GaN junction 
aiding QW confinement. On the other hand, the number of 
charge carriers dispersing into the underlying buffer region 
will also come down due to the effective confinement [1-9].

Reliability problems due to self-heating, deep levels 
found at hetero-interfaces, and exposure to radiation, etc., can 
degrade the expected performance of GaN-HEMT. Because 
of the leftover impurities during the buffer growth process, 
leakage current rises and declines breakdown voltage (Vbr) 
[1-13]. Besides, to capitalize on the material benefits of the 
HEMTs, a highly resistive buffer is necessary [10-13].  In this 
regard, the research community has adopted carbon (C) or 
iron (Fe) doping in the buffer layers [10-13]. The breakdown 
performance can also be improved with the help of Fe-doped 
buffer in the HEMT architecture [10-13].

Normally-ON (D-Mode) nature due to the presence 
of 2DEG limits the widespread of GaN-HEMTs since 
to ensure safe operation and durability, E-Mode operation 
is required which needs added circuitry to achieve OFF-
condition, increasing the size of the device [14-17]. The Vth of 
GaN-HEMT can be engineered using techniques like gate-
metallization, gate-recess, etc. Schottky-barrier-height (ϕb) 
varies for different gate metals, thus paving the way to control 
the Vth of the HEMT [14-17].

A recessed T-gated AlN/GaN HEMT including AlGaN 
(Fe-doped) buffer is designed and the performance evaluation 
against gate engineering is reported in this work using TCAD 
software. In section 2, the device’s structural description is 
presented. In section 3, the RF/DC traits of the HEMT are 
compared among different gate metal designs. The conclusion 
of this simulation work is given in the last section (4).

Experimentation
Device structure

Figure 1 schematically depicts the cross-sectional view of 
the proposed design used in our work. Among the commonly 
used substrates, SiC (Silicon carbide) has become the most 
preferred wafer for GaN power electronic devices since it has 
the smallest thermal-expansion-coefficient i.e., 3.2%, and 
least lattice mismatch i.e., 4% with GaN. In addition, SiC 
wafers also exhibit high-thermal-conductivity (= 4.9 W/
cm/K), improving the device’s reliability [1-4, 18-20]. Due 
to these advantages, the proposed structure is built on a (5-
µm) SiC wafer. The epitaxy is made of an AlN nucleation layer 
measuring 200 nm, an AlGaN buffer layer of 1000 nm doped 
using 3 x 1020 cm-3 of Fe, a 100 nm AlGaN BB, a 50 nm thin 
GaN channel, an AlN top-barrier (6 nm) layer, and a Si3N4 
passivation (3 nm) layer. Apart from length, the structure of 

Figure 1: Structural illustration of proposed AlN/GaN HEMT.

Figure 2: (a) Potential distribution of the simulated AlN/GaN HEMT 
and (b) CB energy distribution of the simulated AlN/GaN HEMT.
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are depicted in figure 6. The fT values extracted for Al-, Mo-, 
Au-, Ir-, and Pt-gated HEMTs are 335.1 GHz, 336.28 GHz, 
336.53 GHz, 334.91 GHz, and 334.95 GHz, respectively. 
The RF outputs (Figure 6) reveal that the device shows a +ve 
shift of Vth with raising ϕm values. Capacitance measurement 
is performed to further confirm the Vth variation between 

nanoscale devices is another serious challenge and can result 
in thermal issues that affect device reliability. Adoption of 
SiC wafer helps to maintain lower operating temperatures, 
improve device reliability, and enhance the performance and 
efficiency of GaN HEMTs in high-frequency and high-power 
applications [1-4, 24-27].

The charge carriers in the QW of GaN HEMTs, whether 
they are D- or E- mode devices, are influenced by the Schottky 
gate. The electrical properties are governed by the ϕb between 
the GM and the semiconductor lying below it. To investigate 
the relationship between ϕb and Vth shift, we have selected five 
common gate metals, listed in table 1. The proposed HEMT 
is simulated using different gate metals and due to their ϕb 
difference, the Vth of the HEMT is shifted. By using the 
TCAD tool, we have examined the RF/DC characteristics of 
the designed gate-engineered structure in this work. The band 
structure diagram of the HEMT is depicted in figure 3 with 

varying values of ϕm.

Analysis of DC characteristics

Figure 4 and figure 5 depict the transconductance (GM) 
curves and transfer characteristics of Al-, Mo-, Au-, Ir-, and 
Pt-gate HEMTs at VDS = 1.4 V. The HEMT measured peak 
GM values of 438.67 mS/mm for the Al-contact, 441.78 mS/
mm for the Mo-contact, 438.24 mS/mm for the Au-contact, 
438.52 mS/mm for the Ir-contact, and 438.4 mS/mm for the 
Pt-contact (Figure 4). The peak values of ID obtained from 
the transfer curves shown in figure 5 are 0.999 A/mm, 1.002 
A/mm, 0.988 A/mm, 0.982 A/mm, and 0.988 A/mm for Al-, 
Mo-, Au-, Ir-, and Pt-gated HEMTs, respectively. From the 
results, it is evident that the device displayed a +ve shift of Vth 
with raising ϕm values. This can be understood with the help 
of disparity in the EB diagram arising from various gate metal 
designs and their respective ϕb values (Figure 3). The simulated 
band-diagrams explore the impact of gate-engineering on 
the electrical properties of the HEMT are shown in figure 
3. The fundamental factor contributing to the disparity 
in the EB diagram is the CB edge’s uplift, that increases in 
direct proportion with rising ϕm values resulting from various 
Schottky-barrier-heights (ϕb) [14-17]. The AlN/GaN 
epitaxial nS substantially decreases as ϕm values increase, which 
is reflected in an increase in Vth. Increasing ϕm values result in 
longer ϕb, which are evidenced by a positive shift of Vth. 

Analysis of RF characteristics

The RF traits of the structure were also examined to assess 
the relationship between Vth and the ϕb of various gate metals. 
The fT-VGS curves of the HEMT with various gate metals 

Table 1: Work functions Φm (eV) for different GM utilized in this work.

Metal Φm (eV)
Al 4.3
Mo 4.6
Au 5.1
Ir 5.27
Pt 5.65

Figure 3: Energy-band (EB) diagram of the proposed AlN/GaN 
HEMT against varying values of ϕm.

Figure 4: Transconductance curves of the proposed AlN/GaN HEMT 
against varying ϕm values.

Figure 5: Transfer curves of the proposed AlN/GaN HEMT different 
ϕm values.
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devices. Figure 7 and figure 8 depict the variations of the gate-
to-source (CGS) and gate-to-drain (CGD) capacitance at an 
applied VDS of 1.4 V for different gate metal values. Based on 
the C-V plots (Figure 7 and figure 8), the HEMT with Al-, 
Mo-, Au-, Ir-, and Pt-gates produced the peak CGG of 2.58 x 
10-13 F/mm, 2.57 x 10-13 F/mm, 2.57 x 10-13 F/mm, 2.58 x 
10-13 F/mm, and 2.57 x 10-13 F/mm @ VGS = 3 V, respectively. 
The trend of the Vth shift against raising ϕm values is consistent 
in the C-V curves of figure 7 and figure 8.

Conclusion
The electrical performance of AlN/GaN HEMT 

employing distinct gate metals was investigated in this work. 
It is observed that the CB edge of the HEMT exhibited an 
uplift in accordance with the increasing values of ϕm. This 
variation in the band diagram is ascribed to the variation of 
corresponding ϕb values. Better performance both in DC and 
RF domains is obtained for Mo-gate HEMT, while a near 
performance is observed in the remaining cases. Using varied 
gate metals in accordance with their various work functions, 
it was noticed that the HEMTs’ threshold voltages shifted. 
The right shift of Vth is noticed with increasing ϕm values. 
The evidence of Vth shifts using gate engineering gives an 
alternative method to integrate E- and D-mode devices for 
the vertical and lateral scaling of GaN-HEMTs intended for 
high-frequency performance. In summary, T-gate-based AlN/
GaN HEMT with Fe-doped buffer is an excellent device with 
effective confinement provided by BB and has great potential 
for next-generation RF power electronics at scaled gate 
lengths.
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