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Abstract
This work applied an iterative Finite Element Method (FEM) and an in-

tuitive formulation to the post-buckling analysis of isotropic circular plates. A 
straightforward iterative finite element formulation has been employed to take 
into account geometric non-linearity of the von-Karman type. The numerical 
value for the circular plate with immovable end considering clamped and hinged 
end boundary conditions is obtained and compared using a standard available 
FEM formulation and accuracy of Intuitive formulation is discussed for immov-
able ends of circular plate based on FEM numerical results. The plate produced 
radial stress because of moderately huge deflection is evaluated by using the con-
verged FEM numerical results and radial tension variation across the radius of 
the circular plate with various boundary conditions is briefly summarized for var-
ious plate boundary conditions considered.

Keywords
Circular plates, Finite element formulation, Intuitive formulation, Post-buck-

ling, Radial tension

Nomenclature
a = the circular plate’s radius; c = the circular plate’s central deflection; C = the 

plate’s axial stiffness (Eh/(1-v2)); D = the plate’s flexural rigidity ((Eh3)/12(1-v2)); 
Young’s modulus = E; [ge] = matrix of element geometric stiffness; [G] = geo-
metric stiffness matrix assembly; h = the plate’s thickness; [KNL] = Assembly 
of the nonlinear stiffness matrix; Tr = radial tensile load per unit circumference; 
T = circumferential tensile stress per unit circumference.; Critical radial load = 
N_(r_cr); r = radial coordinate; U = energy of strain; W = work completed; gener-
alized displacements = 1 x 8; δ = eigen vector; rè,∈ ∈ = radial and circumferential 
strains; λr = non-dimensional radial tensile load parameter = 

2
rT a
D ; λθ = non-di-

mensional circumferential tensile load parameter = 2T a
D
θ ; U = strain energy; u = 

axial displacement; w = lateral displacement; ν = Poisson ratio; α = coefficient of 
linear thermal expansion.

Introduction
Since Berger’s well-known work in 1955, several researchers have examined 

the post-buckling examination of thin circular plates exposed to von-Karman 
strain-displacement relations. Bergers’ [1] estimate involves ignoring the strain 
energy components corresponding to the plate middle surface’s second invari-
ant of strains. In the literature, applications for the related problems where the 
plate’s edges are constrained against in-plane movements, Bergers approximation 
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The annular plate element’s strain energy (U) for isotropic 
and elastic material characteristics may be represented as:
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Where r1 and r2 are the internal and exterior radii of the an-
nular plate member. 

The non-linear stiffness matrix is constructed in terms of 
u, u′, and w′ and w′′ using the similar approach described in 
Rao and Raju [14-16].
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For u and w over the element, cubic displacement distribu-
tions are assumed.  

2 3
1 2 3 4u r r rα α α α= + + + 			          (7)

2 3
5 6 7 8w r r rα α α α= + + + 			          (8)

The element geometric stiffness matrix, written as, is com-
puted using the work (W) that the external force has done. 
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Where, W is the radial equivalent of the uniform compres-
sive force per unit length. The matrix equation describing the 
plate’s post-buckling behavior is found to be using the conven-
tional constructing procedure.  

[ ]{ } [ ]{ } 0NLK Gδ λ δ+ = 				  
						           (10)

Equation 10 may be solved using a common approach 
[15] to extract the eigenvalues and eigenvectors.

The numerical values obtained using the conventional 
FEM technique mentioned in applying a least-squares curve 
fit of the proportion of post-buckling load variable to linear 

demonstrates that proper solutions are obtained. A modified 
energy expression created by Banerjee and Datta [2] results in 
decoupled huge deflection plate equations (similar to Berger’s 
method).

Thermal post-buckling analysis of uniform, isotropic, thin, 
and shear flexible columns is described by Gupta et al. [3] uti-
lizing a precise finite element formulation and a significantly 
simpler intuitive technique. Jones et al. [4] recommended em-
ploying a perturbation technique in situations when Berger’s 
approach might not be accurate enough. Berger’s method’s 
accuracy in the situation of mechanical loading is correlated 
with the specific type of boundary condition given, accord-
ing to Nowinski and Ohnabe [5]. Naidu et al. [6] investigates 
the post-buckling behavior of circular plates supported by a 
somewhat elastic axi-symmetric base. The nonlinear vibrations 
of tapered circular plates with edges that were elastically con-
strained against rotation were studied by Raju and Rao [7]. 
The post-buckling behavior of circular plates was studied by 
Raju and Rao [8-11]. According to Tauchert [12], the results 
of earlier studies are unquestionably relevant to both me-
chanical loads and thermal deflections. Once more, Ramaraju 
and Gundabathula [13], examine the post-buckling analysis 
of circular plates using an intuitive construction. Numerous 
studies [14-17] use finite elements and logical formulations 
to study vibration and post-buckling behavior. Rao and Varma 
[18] predicted the post-buckling load of circular plates with 
immovable ends using a simple notion. The authors assumed a 
set of permissible lateral displacement variation and then eval-
uated radial tensile load parameters analytically.

In thin circular plates, nanomaterials can be used to make 
the plates. There is a lot of scope in the nano material to in-
clude for studies. New perspectives in the domains of science 
and engineering have been opened up by the production of 
nanofibers from polymers that are natural or synthetic, metal-
lic substances, semiconductors, composite materials, and car-
bon-based materials [19].

The post-buckling analysis of thin circular plates was in-
vestigated in this work utilizing a rigorous iterative finite ele-
ment formulation with axially moveable and immovable ends. 
Intuitive formulation also makes use of the eigenvector derived 
via rigorous finite element formulation. By disregarding and 
using Berger’s assumption, the tension parameter is assessed, 
and its effect on the projection of the post-buckling envelope 
of analytical results is briefly looked at. In addition to present-
ing radial and circumferential load fluctuations, the accuracy 
of numerical results derived utilizing Intuitive formulation is 
briefly explored in this paper.

Experimentation
Finite element formulation

The circular plate with small strains and large rotations 
can have the von-Karman strain-displacement relations [20]
for axi-symmetric deformation.
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Leaving out the numerical value of a2 from the least 
square fitting equation, the post-buckling phenomena may be 
described as follows:
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It should be noticed that the bI in equation 21 forecasts 
the coefficient terms pertaining to the order of the variables.  
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By equating the preceding equation 20 and equation 
21, the tension approximation from the intuitive formulations 
may be used to get the coefficient bI, which is expressed as: 
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buckling load parameter, as shown below [7, 8].
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Intuitional formula

The definition of the term “radial and circumferential 
tension developed per unit length of circumference” is given 
by:

( ) ( )2 01
a

r r
EhT v dr

v θε ε= +
− ∫ 			        (13)

( ) ( )2 01
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r
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vθ θε ε= +
− ∫ 			        (14)

This study determines the tension created in the circular 
plate and predicts the post-buckling behavior of circular plates 
with adjustable and immovable plate edges. If r is a non-zero 
value and the second invariant of strain is zero, then:

0θε = 					          (15)

When applying Berger’s approximation, the following 
condition must be satisfied:

0θε = 						          (16)

The formulas for radial and tangential tension per unit 
length of circumference are as follows, using the circumstances 
in the equation above:
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	       Figure 1 and figure 2 demonstrate the fluctuation of these 
parameters in non-dimensional form for moveable and im-
movable end boundary conditions, respectively.

Once Tr and Tθ are the non-dimensional tension pa-
rameters are assessed using equation 13 and equation 14 or 
equation 17 and equation 18, which apply the Berger’s as-
sumption. 

2
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 may be analyzed, and circular plate 
post-buckling analysis can be represented as:

NL L rλ λ λ= + 					          (19)

The above equation may be rearranged as follows:

1NL r

L L

λ λ
λ λ

= + 				                       (20)

Figure  1: Variation of tension parameters λr and λθ for hinged and 
clamped circular plate with immovable end.

Figure  2: Variation of tension parameters  λr and λθ for hinged and 
clamped circular plate with axially movable end.
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Circular plate equations

FEM vs analytical formulation for clamped circular plates’ 
post-buckling behavior
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4.1978Lλ =

2 2

2 2

7.903194401 1 1 1.88275
4.1978

NL T

L L

P b b
P h h

λ
λ

= + = + = + 	     (28)

Results and Discussion
Table 1 displays the boundary conditions that were taken 

into consideration for the post-buckling analysis of a circular 
plate with an immovable edge. The post-buckling analysis 
results are reported in equation 11 and equation 12 using a 
formalized finite element method, and the calculated values 
of a0, a1, and a2 are summarized in table 1 for each of the 
boundary conditions examined in this work.

The numerical outcomes of a postbuckling study of circu-
lar plates with immovable end conditions are shown in table 
1 using rigorous FEM. The same findings are reported in this 
study to compare the accuracy of intuitive formulation with 
those found in the open literature.

	The Intuitive formulation’s equaiton 22 is used to forecast 
the post-buckling analysis of a circular plate, and equation 13 
or equation 17 are used to obtain the radial tension parame-
ter (r). Circular plates’ post-buckling behavior when they have 
fixed ends when different tension estimations were used in 

the current experiment is shown in the accompanying table. 
For axially immovable ends, the average or integrated ten-
sion method overpredicts the coefficient a1, but implementing 
Berger’s assumption when assessing tension parameter leads to 
underprediction of the coefficient a1. While the findings from 
the central node tension value for the hinged case are typically 
accurate, they show a minor divergence for the clamped plate 
with immovable edge. This method does not seem to produce 
a good estimate for the movable ends of the plate since intui-
tive formulation yields substantial variance.

•	 In the reference by Gupta et al. [3], numerical findings 
for nonlinear frequency are compared with linear change 
of u and cubic variation of w.

•	 As previously reported by Gupta et al. [3], cubic variation 
of u and w for beams with axially immovable end 
conditions demonstrates that At every node, the tension 
(membrane stretching force) created is zero of the beam’s 
FEM idealization..

•	 In the current study, intuitive formulation results in 
pretty excellent approximation for immovable edge 
conditions of the plate, however it does not result in a 
decent approximation for moveable ends. 

•	 It is possible that, when using an intuitive formulation, 
the influence of field inconsistency leads to inaccurate 
results in the post-buckling analysis of circular plates with 
moving edges. This effect may be further explored. The 
current work may serve as a motivator for determining 
the applicability of intuitive formulations for circular 
plates with movable ends. The same is being pursued by 
the authors and accuracy of such analytical methods will 
be discussed in future works planned.

•	 When equation 13 multiplied for 2(1 ν− ), results ob-
tained from the present FEM based intuitive formulation 
(Table 2) shows an excellent agreement with the results 
obtained from rigorous finite element formulation for 
circular plates with immovable ends (Table 3) without 
invoking any further assumption on equation 13 in con-
trast to the previous analytical intuitive formulations re-
ported on this problem of immovable ends.

•	 When equation 13 multiplied for 2(1 ν− ), conclusions 
from the current FEM based Intuitive formulation (Table 
4) shows slight improvement for movable ends compared 
to rigorous finite element formulation results. However, 
as discussed above, field consistency of axial displacement 
filed effects will be investigated and discussed in future 
works planned. 

Conclusion
Using a stringent finite element approach, the buckled 

post behavior of circular plates with clamps and hinges with 

Table  1: Boundary requirements for the circular plate with axial limita-
tions were taken into consideration (u(0) = u(a) = 0).

S. No. Boundary configuration Boundary conditions on w
1 Clamped w’(0) = w(a) = w’(a) = 0
2 Hinged w’(0) = w(a) = 0

Table 2: Boundary specifications for a circular plate with a changeable edge.

S. No. Boundary configuration Boundary conditions
1 Clamped u(0) = w’(0) = w(a) = w’(a) = 0
2 Hinged u(0) = w’(0) = w(a) = 0
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fixed end conditions is once more examined. The strict finite 
element formulation’s eigenvector is then used in the intuitive 
formulation to forecast the post-buckling behavior of hinged 
and clamped circular plates under circumstances involving im-
movable ends. The accuracy of intuitive formulations based on 
FEM numerical findings for circular plates with immovable 
end boundary constraints is explored. The intuitive technique 
yields reasonable approximations for circular plates with im-
movable ends, but the results for moving ends are errone-
ous. The eigenvector produced by a stringent for clipped and 
hinged boundary conditions, a finite element formulation is 
moveable and immovable end conditions is used to demon-
strate how radial and circumferential tensile load characteris-
tics may change. The outcome of the present study is a major 
motivating factor to pursue further in improving the accuracy 
of the existing analytical intuitive formulations relevant to cir-
cular plates with immovable edges and the same is being pur-
sued rigorously with isotropic as well as orthotropic circular 
plates which will be reported in the immediate works planned 
by the authors.
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