Machine Learning-based Investigation of Wear and Frictional Behavior in Graphite-reinforced Aluminum Nanocomposites

Sathishkumar Arumugam¹, Sachin Kumar², Pramod Sridhara³, Srinivasan Raju⁴, Ashwin Prabhu Gnanasekaran⁵, Nanthakumar Sivasamy⁶ and Thangarajan Sivasankaran Senthilkumar⁷

¹Department of Electronics and Communication Engineering, Erode Sengunthar Engineering College, Erode, Tamil Nadu, India
²Department of Mechanical Engineering, University Institute of Engineering and Technology, Maharshi Dayanand University, Rohtak, Haryana, India
³Department of Mathematics, Nitte Meenakshi Institute of Technology, Bangalore, Karnataka, India
⁴Department of Mechanical Engineering, Sri Krishna College of Technology, Coimbatore, Tamil Nadu, India
⁵Department of Mechanical Engineering, St. Joseph’s College of Engineering, Chennai, Tamil Nadu, India
⁶Department of Mechanical Engineering, PSG Institute of Technology and Applied Research, Coimbatore, Tamil Nadu, India
⁷Department of Mechanical Engineering, K. Ramakrishnan College of Technology, Tiruchirappalli, Tamil Nadu, India

Abstract

The researcher used a cell segmentation technique in conjunction with other image analysis methods to quantitatively retrieve and compute the cellular microstructural structures in a sub-grain size of silicon carbide (SiC)-reinforced AA2219 made by powder fusion bed (size 0.5 - 1µm). Over 83 geometric features were retrieved and statistically analyzed using ML (Machine learning) techniques to examine the structure-property relationships in SiC-reinforced AlSi20Mg nanocomposites. These sub-grain cellular microstructure properties were utilized to develop hardness and relative mass density analytical models. Using principal component analysis (PCA), authors could narrow down the three variables. While all of the AlSi20Mg nanocomposite samples had identical Al-Si eutectic microstructures, the mechanical properties, such as hardness and relative mass density, varied widely depending on the laser parameters used to create them. Extra Tress regression models that attempted to predict hardness had a close error rate of 2.47%. Using a regression model based on Decision Trees, authors could predict relative mass density to within 0.42 standard deviations. The established models are shown to be capable of predicting the relative hardness and relative mass density of AlSi20Mg nanocomposites. The structure identified in this study has applications for controlling the mechanical properties of PFB (powder fusion beds) and could be applied to other additively manufactured alloys and composites.

Keywords

AlSi20Mg, Machine learning, Silicon carbide, Powder fusion bed, Microstructure, Segmentation

Introduction

Many studies have investigated the feasibility of using AlSi20Mg, and eutectic Al-Si alloy, in PFB [1, 2]. AlSi20Mg is a popular casting alloy for challenging structures because of its higher strength, solidity, and well-dynamic characteristics under heavy loads. Researchers can customize the treatment of machined, spark-eroded, welded, shot-peened, coated, and polished AlSi20Mg components [3]. Due to cooling-induced recrystallization, the PFB of AlSi20Mg can yield small equiaxed grains with a delicate pseudo-eutectic cellular microstructure. AlSi20Mg melt of different lengths formed into columnar grains [4]. Unique properties result from the alloy’s unusual near-eutectic Al-Si microstructure.
Modifying process parameters often results in a porous-free, dense material with a high microhardness during PFB manufacturing of alloys (such as laser power and scan speed). PFB AlSi20Mg alloy components have their vertical surface roughness investigated to better understand this factor [5]. A comparatively higher density of track energy delivered to the contours is required to produce a flat, even surface. Hasan et al. [6] analyzed the plastic and fracture performance of AlSi20Mg samples generated via casting and PFB. Results showed that compared to PFB-produced AlSi20Mg, cast samples exhibited lower yield strength (YS) and higher ultimate tensile strength (UTS). With a mean radius of 10.7 m, the voids in the PFB-produced alloy are substantially smaller and more circular. Yang et al. [7] found that the ductile strength, YS, UTS, and modulus of AlSi20Mg PFB-produced samples correlated with their porosity using a linear fit, a defect exposure technique, and a problematic limited strain [8]. The correlation between flexibility and porosity was experimentally established. The research demonstrates that macro characteristics like porosity and roughness produced by PFB on AlSi20Mg samples are insufficient to infer mechanical parameters, including YS, UTS, and hardness [9].

Regarding the microstructural–property links, other microstructure indicators should be investigated. AlSi20Mg’s mechanical behavior was discovered to be correlated with its sub-grain cellular structure. Modifying the specimen hardness by altering the energy input and heat treatment is possible due to the microscopic cellular-dendritic solidification structure variation [10]. To define the connection between the cellular structure of AlSi20Mg at the sub-grain level and the material mechanical properties, Yang and Özöl [11] derived two distinct morphological indices, the dimension-scale index, and form index, from SEM (Scanning electron microscope) pictures. Alterations in sub-grain cell size and cell boundary morphology were shown to have a significant impact on the mechanical characteristics of PFB-produced AlSi20Mg. However, there hasn’t been enough study dedicated to developing a more precise depiction of the sub-grain cellular structure. Composites comprising metal matrices and reinforcing phases show enhanced dynamic behavior and mechanical characteristics [12]. Paulson et al. [13] discovered, micro/nano metal matrix composite created with PFB can offer benefits over unreinforced materials.

As a very effective data-driven modeling tool, ML requires a large amount of training data, so additional process features may be incorporated into the prediction. Yu et al. [16] explored the potential of the machine learning instruments MIPHA and rMIPHA for use in analyzing steel properties based on 2D and 3D microstructure characteristics like area proportion, obliqueness, hardness, ferret’s span or angular position, count proportion, volume proportion, area of the surface, Gauss curve, sphericity, sort, etc. Reverse engineering using MIPHA allowed us to examine microstructures that provide the stress-strain curvature, tensile strength, and overall elongation. The complex amorphous structure of metallic glass was defined by Suzuki et al. [17], employing a single rigidity-oriented structural characteristic associated with the pair distributional role of distinct atoms via a weight function. Vibrational, diffusional, elastic, and plastic relaxation responses are all shown to correlate with the underlying structure [18]. However, PFB-made AlSi20Mg-based composites are still in their infancy in terms of a high-fidelity data-driven model for the microstructural–mechanical characteristics couplings [19].

This study aims to fill the knowledge gap concerning PFB-created AlSi20Mg nanocomposites by elucidating the relationships between the nanocomposites’ sub-grain microstructure and their mechanical properties, investigating the impact of laser factors on melt pool geometry and sub-granular texture. The nanocomposites’ porosity and microstructure are affected by the laser parameters used to create them. The mechanical characteristics of AlSi20Mg nanocomposites were predicted using ML and microstructural texture data. This analysis aims to develop a methodology for characterizing and estimating the correlation between the variation in microstructural texture generated by changing laser parameters and the resulting changes in the hardness than the relative density of SiCs/AlSi20Mg composites. The developed model can be employed for optimizing processes and designing new materials. The principal component analysis employed here is amenable to future adaptation for use with different alloys and was used to aid in the discovery of the nanocomposites' high microstructure. It elucidated the connection between the sub-grain cellular microstructure and mechanical characteristics of PFB-produced SiC-reinforced AA2219 as an outcome of rapid cooling.

Materials and Method

Processing of material and PFB

Commercial gas-atomized AlSi20Mg powder (particle size range: 30 - 115 μm) and untreated SiC (outer diameter: 3 - 15 nm, span: 20 - 40 μm) were employed raw materials for SiC (SiC 0.5 wt.%) - strengthened AA2219. SiC was consistently coated on the surfaces of AlSi20Mg particles using an XQM-4 planetary ball mill. There were as many steel balls as there were powders, and the mixture was stored in stainless steel bowls. The rotating speed was set to 200 rpm, and the milling time was 4 h. Every 15 min of milling was followed by a 5-min break to prevent the powder combination from overheating. The powder was dried in a vacuum chamber at 80 °C for 4 h.

The PFB processing was performed with an ytterbium fiber laser that peaked at 550 W, had a size of 95 m, and
maintained a wavelength of 1080 nm on a commercial SLM machine with a 275 mm x 275 mm x 340 mm build volume. Table 1 shows that this test produced 16 samples with a 460 W at 2.5 m/s and laser power (360 - 460 W). Previous reports [14] detailed the comprehensive material characterization and mechanical testing findings of SiCs/AlSi20Mg nanocomposites. In our earlier research, nanocomposites with SiC reinforcement have superior mechanical properties to AlSi20Mg without SiC reinforcement, with yield strengths increasing by more than 10%.

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Laser power (W)</th>
<th>Laser scan speed (m/s)</th>
<th>Hardness (HV)</th>
<th>Relative mass density (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>460</td>
<td>2.5</td>
<td>128.60</td>
<td>97.21</td>
</tr>
<tr>
<td>2</td>
<td>460</td>
<td>2.3</td>
<td>125.35</td>
<td>98.86</td>
</tr>
<tr>
<td>3</td>
<td>460</td>
<td>2.1</td>
<td>126.31</td>
<td>99.78</td>
</tr>
<tr>
<td>4</td>
<td>460</td>
<td>1.9</td>
<td>125.63</td>
<td>99.18</td>
</tr>
<tr>
<td>5</td>
<td>418.4</td>
<td>2.5</td>
<td>120.72</td>
<td>96.54</td>
</tr>
<tr>
<td>6</td>
<td>418.4</td>
<td>2.3</td>
<td>123.91</td>
<td>97.46</td>
</tr>
<tr>
<td>7</td>
<td>418.4</td>
<td>2.1</td>
<td>124.26</td>
<td>99.02</td>
</tr>
<tr>
<td>8</td>
<td>418.4</td>
<td>1.9</td>
<td>124.31</td>
<td>98.63</td>
</tr>
<tr>
<td>9</td>
<td>385.6</td>
<td>2.5</td>
<td>98.62</td>
<td>94.83</td>
</tr>
<tr>
<td>10</td>
<td>385.6</td>
<td>2.3</td>
<td>104.81</td>
<td>96.24</td>
</tr>
<tr>
<td>11</td>
<td>385.6</td>
<td>2.1</td>
<td>123.23</td>
<td>99.45</td>
</tr>
<tr>
<td>12</td>
<td>385.6</td>
<td>1.9</td>
<td>124.12</td>
<td>99.23</td>
</tr>
<tr>
<td>13</td>
<td>360</td>
<td>2.5</td>
<td>101.63</td>
<td>93.12</td>
</tr>
<tr>
<td>14</td>
<td>360</td>
<td>2.3</td>
<td>121.87</td>
<td>94.26</td>
</tr>
<tr>
<td>15</td>
<td>360</td>
<td>2.1</td>
<td>124.36</td>
<td>97.35</td>
</tr>
<tr>
<td>16</td>
<td>360</td>
<td>1.9</td>
<td>121.12</td>
<td>95.86</td>
</tr>
</tbody>
</table>

This study aims to create a high-fidelity experiment-computerized structure for characterizing the cell framework of SiCs/AlSi20Mg composites, with the goal of correlating the sub-grain microstructural with their mechanical characteristics.

The relative mass density of SiCs/AlSi20Mg nanocomposites is determined employing Archimedes’ principle of density. With optical pictures and Image approach, researcher could also calculate the areal density of micropores and identify voids within them [20]. These two density measurements yield comparable results for various samples. A Vickers hardness tester with a weight of 10 kg and a period of 5 s was utilized to conduct hardness testing [21]. The sub-grain cellular microstructure was captured by SEM at 13,000 and 26,000 magnification. Optical microscopy was utilized to analyze the microstructures of the samples and the morphology of the melt pool [22].

Image processing for cellular structures

Figure 1 depicts various melt pool structures of the as-built SiCs/AlSi20Mg nanocomposites. The surface morphology of the melt pool, which has a roughly 45° texture, and the laser scan pattern is indicated in figure 1a. Figure 1b depicts the cross-sectional morphology of a melt pool, showing melt layers formed parallel to the build direction and devoid of micro-porosity. It is challenging to quantitatively differentiate themelt pool shape of variant laser factors due to the overlapping melt pools on the top surface. According to our previous research, it is impossible to relate the form of melt pools to the mechanical characteristics like hardness and relative mass density because of the microporous nature of the nonuniformity in the macro-scale microstructure.

The sub-grain cellular eutectic structure of the SiCs/AlSi20Mg nanocomposite specimens was processed and described using SEM imaging to solve the problem of linking the microstructure to mechanical properties (Figure 2). To the contrary, SiCs/AlSi20Mg nanocomposites show a eutectic and sub-cell. Aluminum-silicon microstructural in a planevertical to the direction of construction, as determined by sub-grain analysis [23]. For specimen 1 and 12, the size and shape of the sub-grain cellular microstructure are significantly affected by the laser settings. Most sub-cells in the temperate zone fall within the 0.5 - 1 µm size range, while cells in the coarse region are 1 - 2 µm in size. For the fine sub-grain region, a network of Si precipitates surrounds a dark a-Al matrix [24]. Visible in the hazy parts of the heat-affected zone (HAZ) are Si precipitates that have formed more randomly. The delicate sub-grain phase predominates over the HAZ/coarse sub-grain zone. Therefore, this research aimed to examine how tiny sub-grain texture features in SiCs/AlSi20Mg nanocomposites affected their hardness and relative density. This work considers that six photos per sample adequately describe the geometrical properties in the fine cell zone because more than 2,000 cells may be recognized for each image.

Bulk characteristics, such as porosity, and the particular Al-Si eutectic microstructure of the nanocomposites are linked to
An accurate description of the $T_{com}(2)$ illustrates a flowchart of the proposed S281NanoWorld Journal | Volume 9 Supplement 3, 2023
Machine Learning-based Investigation of Wear and Frictional Behavior in Graphite-reinforced Aluminum Nanocomposites Arumugam et al.

their mechanical elements, such as surface hardness. Software was used to segment the cells in the SEM picture and extract their geometric properties. Figure 3d shows that high-quality cell segmentation characteristics require multiple image processing steps:

- As a means of enhancing the contrast, the original SEM image was converted from color to black and white;
- Set the size of the cell nuclei to between 0.15 and 0.5 m, and then use the Otsu thresholds to isolate.
- The SEM image shows a close-up of the nuclei of the various cellular components. The Otsu method minimizes the variation between the two groups of pixels (foreground and background) using the equation. This allows it to be used to determine the optimal threshold for distinguishing between the two (1),

$$T_{opt} = \arg\max\left\{ \frac{P(T)[1 - P(T)][m_f(T)m_b(T)]^2}{P(T)\sigma_f^2(T) + [1 + P(T)]\sigma_b^2(T)} \right\}$$

Where $P(T)$ is probability function, $\sigma_f^2(T)$ and $\sigma_b^2(T)$ are foreground and background of class variances, $m_f(T)$ and $m_b(T)$ are class means. This method produces excellent results when the pixel counts in adjacent cells are similar, as shown in figure 3c.

- Figure 3d displays the calculations used to determine cell shape and coordination using individual nuclei data. The boundary between adjacent cells is defined using the propagation technique. The final threshold is determined by determining the value of the least cross-entropy among the foreground and background circulations (Equation 2).

$$T_{ce} = \arg\min\left\{ \sum_{g \leq T} gP(g)\log \frac{g}{m_f(T)} + \sum_{g > T} gP(g)\log \frac{g}{m_b(T)} \right\}$$

Where $\sum_{g \leq T} gP(g)$ and $\sum_{g > T} gP(g)$ is probability function,

In figure 3a, for instance, there were 2,466 cells counted. Each cell’s geometric features were determined. Researcher retrieved and computed a total of 83 coordinate-independent characteristics for each cell. The following are descriptions of various essential qualities among those employed in this investigation:

A cell’s size is measured in terms of its perimeter, which is the distance around its perimeter. Specifically, the eccentricity of an ellipse is the ratio of its focus distance to its maximum axis length. Its values range from zero to one. The cell extent is the fraction of its area. The degree of solidity is defined as the fraction of the convex hull within the cell. One can define a tight circle as one that is filled. The irregular or missing cells have a more significant value than 1. Distance from one point inside an entity to the nearest point outside the cell is its average radius [25]. An accurate description of the geometry and shape of a cell required multiple seconds.

First, a circle is defined by finding the location of the cell center of mass. Using this method, researchers determined a cell Zernike moments Z_{nl}

$$Z_{nl} = \frac{n+1}{n} \sum_{x,y} x^n y^m e^{-i\theta}$$

Where $x^2 + y^2 \leq 1$, $0 \leq l \leq n$, $n - l$ is even, $V_{nl}(x,y)$ complex conjugation $V_{nl}(x,y)$ is definite as

$$V_{nl}(x,y) = \sum_{n=0}^{l} (-1)^{(n-l)} \frac{\binom{\frac{n-l}{2}}{\frac{n-l}{2}}}{n!} x^{(n-l)} y^{l-n}$$

Where $0 \leq l \leq n$, $n - l$ even

$\theta = \tan^{-1}(y/x)$, and $i = \sqrt{-1}$.

This investigation computed Zernike polynomials of orders 0 through 9, along with a total of 30 characteristics. This section provides a quick overview of the other significant components. A cell spatial moment features is the sum of many weighted averages of its dimensions, orientations, and distances. As the cell’s centroid is used as the reference point, central moment features are insensitive to the spatial context in which the cell is located. Scale-invariant normalization of moment features removes the impact of cell size on previously normalized features [26]. In contrast to other moment features of a cell, the Hu moment features are invariant under changes in the cell’s position, size, and orientation. The form of a cell can be best described by looking at it at various times.

Figure 4 illustrates a flowchart of the proposed microstructure-property linkage framework for SiC/AlSi20Mg nanocomposites using PFB. The framework considers cell segmentation and machine learning support. By processing and segmenting SEM images, researchers can examine the microstructure and determine where the Si-

![Figure 3a](Image)

Figure 3a: SEM picture of the ultra-fine cell region in (a) SiC/AlSi20Mg. (b) the inverse gray photograph, (c) a cellular nucleus plot obtained through b and d a segmented cellular map displaying a higher fidelity depiction of the fine cellular zone cell form as well as size.
rich phase and aluminum phase are located within individual cells [12]. Images with a broken Si-rich stage were processed by joining dashed dots to create whole cells. The following picture is formed by associating the pixels inside a cell with the aluminum phase and the pixels outside with the Si-rich stage. Next, researcher presented data from both the Si-rich and aluminum phases by extracting and calculating morphological features for each cell. In the training phase, it was demonstrated how 76 sample SEM images were chosen at random to serve as the training set. The remaining 20 specimens were put through their paces as a test group. To determine a connection between the sub-grain cellular structure of SiCs/AlSi20Mg nanocomposites and their mechanical properties, KNN (K-Nearest Neighbors), AdaBoost, decision trees, gradient tree, and extra trees boosting regressions were all employed as machine learning methods.

ML techniques

The value was used as the performance parameter for a regressor trained with machine learning. This is because the root mean square error (RMSE) is more complex to outliers than the root square of the MSE (mean square error), where the impact of error is proportionate to its magnitude. Errors are also evaluated relative to one another [27]:

\[
RMSE = \sqrt{\frac{\sum_{i=1}^{N} (y_i - \hat{y}_i)^2}{N}} \tag{5}
\]

\[
MSE = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 \tag{6}
\]

Where \(\hat{y}_i\) is forecasting of a regression depending on variable \(y_i\), \(N\) is no data.

Mean normalization was applied to the feature values with:

\[
\bar{X} = \frac{X - \text{average}(X)}{\text{stdev}(X)} \tag{7}
\]

A variety of regressors based on machine learning were applied here. AdaBoost is a meta-estimator that first uses the input dataset to fit a regressor and then uses the same dataset to provide more copies of the regressor with weights of instances changed based on the prediction error [28]. With Gradient Tree Boosting, an additional model is constructed in an incremental, forward fashion [29]. It enables the optimization of non-trivial loss functions that can be differentiated. Each iteration involves fitting a regression tree to the negative gradient of a based on the functional loss. The input for K-neighbors neural network is the k nearest training instances from the data collection, while the method's outcome is the object's property value. The mean of the predicted values of KNN is used [30]. The prediction value is deduced from the input data \(x\) and the number \(K\).

\[
\hat{y}_i = \left(\frac{1}{K} \right) \sum_{k=1}^{K} y_{i(k)} \tag{8}
\]

Where, \(N_k(x)\) is the K nearest neighbor points to the input \(x\), \(y_i\) represents the output value for each \(x_i\) in \(N_k(x)\).

Using either the Euclidean or Mahalanobis distance, KNN regression determines how similar the query example is to the labeled instances. Then, using RMSE and cross-validation, the labeled examples at increasing distances determine the best possible value for \(K\), the number of nearest neighbors.

Learning fundamental decision rules from the properties of the data is the purpose of utilizing decisional trees to construct a model that assesses the target rate. A tree's inner nodes stand for attributes to be tested, its branches for test results, and its leaf nodes for class labels. While gradually building a decision tree, it breaks down a dataset into ever-smaller pieces [31]. Regarding machine learning, Extra Trees takes a top-down approach to growing a forest of unpruned trees [32]. When constructing its trees, Extra Trees fully uses all available training data. Before beginning the procedure, \(m\) structures are chosen randomly as split elements for each network node. The dividing lines between each feature group are likewise chosen at random. Selecting features and thresholds at random will significantly increase the randomness of the process, which will further reduce the variance [33, 34]. The minimal number of samples on the leaf nodes, the sum of arbitrarily picked features, and the number of trees are three crucial hyperparameters that need to be modified. When added to decision forests algorithms, Extra Trees, also known as severely randomized trees, add random elements. It uses a meta-estimator to increase predicted accuracy and regulate overfitting by fitting multiple randomized decision trees to different dataset subsamples and
averaging the results. Collectively, these classifiers can make a more accurate forecast than anyone could do alone. A typical Extra Trees approximation is depicted in (8):

$$\hat{y}(x) = \sum_{i=0}^{N} \sum_{l \in \{l, \ldots, L\}} \prod X_i \in X^l \quad (8)$$

Where N is specimen size, \(I(i_1, \ldots, i_n) \) is the characteristic function of the hyper-interval, and \(\lambda^X_{(i_1, \ldots, i_n)} \) is real-values parameters depend on input \(x_i \) and output \(y \) of the algorithm.

By projecting each feature onto many principal components, this study uses principal component analysis to reduce the dimensionality of the structures while keeping as much of the data's original variance as probable. Investigating the hidden connections throughout massive datasets is its primary function. The core notion behind principal components analysis is choosing K (here, K = 3, which means we've selected units of the orthogonal basis on three data dimensions). By transforming the actual data to these 3 sets of bases, researcher can eliminate the covariance between any two features and increase the variance between elements. The same information that would have required 83 elements in the original interplanetary can be conveyed with just 3 extra components for dimensionality reduction.

Results and Discussion

Characterization of nanocomposite and cellular framework

AlSi20Mg powders have SiCs deposited on their surfaces after being ball milled. The surface of the ball-milled nanocomposites has a composition of Al-67.8 wt.%, C-25.3%, Si-6.6%, and Mg-0.34 wt. %, as shown in the elemental distribution mapping in Figure 5. After ball milling, the carbon element map shows that the SiCs are evenly distributed across the surfaces of the AlSi20Mg powder, a necessary step for the SLM of homogeneity and density of SiCs/AlSi20Mg nanocomposites.

Figure 6 displays a computer-aided design representation of a tensile bar testing. The standard yield strength was 380 x 14. Scratched nanocomposite samples were incised to expose the melt pool's morphology [35]. Crack fronts relative to the melt pool structure are displayed in Figure 7. The high aspect ratio structure along the fracture front in the melt pool is now clearly apparent due to the tensile strength. In addition, the SiC phase is visible in the nanocomposites. Figure 7a and 7b depict two distinct fracture propagation routes, one caused by melt pool borders and the other by an elongated melt pool structure. When a crack is localized to the central areas of a melt pool, the cellular network is the primary barrier to crack propagation, as discovered by the author [36]. It provides further evidence that the mechanical properties of AlSi20Mg-based composites are related to their cellular structure's sub-grain size. Fractographic images of SiC/AlSi20Mg nanocomposites under tensile stress are displayed in Figure 8. This material exhibited ductile fracture with dimple rupture patterns.

The results demonstrated that the suggested framework is reliable and could accurately describe the form and magnitude information of the well-fine and HAZ coarse cellular zone.
of SiC/AlSi20Mg composites. Table 2 displays the average values for each attribute. However, the fine cellular structure of the SiC/AlSi20Mg nanocomposites constitutes the dominant phase. Therefore, only the delicate cellular zones are examined here, along with their connections to mechanical qualities like hardness and relative density.

Predicting relationships between microstructure and properties using ML

The SiC/AlSi20Mg nanocomposites hardness and relative mass density were predicted using a set of 83 attributes generated from the sub-grain cell separation structures analyzed using KNN, Gradient Boost, decision trees, AdaBoost, and Extra Trees. A normalization procedure was applied to each feature to eliminate any inherent bias. A validation set comprised of the remaining 20 SEM pictures was utilized to evaluate the model’s accuracy.

It was determined which features were most important using a combination of AdaBoost, a decision tree, and the Extra Trees regression (Figure 9). AdaBoost was proven to be most effective at evaluating the hardness of SiC/AlSi20Mg nanocomposites based on the following 5 criteria: Zernike moment (9.98%), perimeter (9.14%), eccentricity (8.13%), compact (7.56%), and maximal radius (7.23%). The decision tree regressor uses the following 5 features: eccentricity (8.14%), Solidity (7.56%), Extent (7.26), Mean radius (7.26), and Maximal axis length (8.26). As for the relative mass density, AdaBoost is the most effective at evaluating the hardness of SiC/AlSi20Mg nanocomposites, as even the weakest ML algorithm in this work can produce a RE of 6.1%. The decision tree technique may predict the relative mass density with the highest accuracy, which has an RMSE of 3.12%, an MSE of 0.0612%, and a RE of 1.61. Its prediction performance is superior to other base learners (Table 4).

The central feature values for the high hardness specimen are 0.76 for eccentricity, 3.56 pixels for mean radius, 5.47 for compactness, 2.65 µm for perimeter, 0.46 for extension, and 0.16 for Zernike 2.0 (Figure 10). For a given mean radius, a more compact shape and smaller perimeter will produce a more rigid surface. These findings demonstrate the proposed model’s ability to accurately predict mechanical properties from inputs consisting of sub-grain cellular details. This finding demonstrates that the model created here may yield relatively accurate results even when working with a small training set.

Table 2: Median cell property range in the HAZ and fine cell zone.

<table>
<thead>
<tr>
<th>Features</th>
<th>HAZ</th>
<th>Fine cell zone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eccentricity</td>
<td>0.87</td>
<td>0.82</td>
</tr>
<tr>
<td>Euler number</td>
<td>0.98</td>
<td>0.97</td>
</tr>
<tr>
<td>Form factor</td>
<td>0.52</td>
<td>0.58</td>
</tr>
<tr>
<td>Perimeter (µm)</td>
<td>3.281</td>
<td>2.886</td>
</tr>
<tr>
<td>Minimum axis length (µm)</td>
<td>0.455</td>
<td>0.427</td>
</tr>
<tr>
<td>Extent</td>
<td>0.63</td>
<td>0.66</td>
</tr>
<tr>
<td>Solidity</td>
<td>0.88</td>
<td>0.92</td>
</tr>
<tr>
<td>Maximum axis length (µm)</td>
<td>0.728</td>
<td>0.723</td>
</tr>
<tr>
<td>Area (µm²)</td>
<td>17.12</td>
<td>13.26</td>
</tr>
<tr>
<td>Compactness</td>
<td>2.82</td>
<td>2.44</td>
</tr>
</tbody>
</table>

Table 3: Comparing the efficacy of several ML techniques for predicting surface hardness.

<table>
<thead>
<tr>
<th>ML method</th>
<th>RMSE (HV)</th>
<th>MSE (HV²)</th>
<th>RE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AdaBoost</td>
<td>6.264</td>
<td>36.129</td>
<td>3.17</td>
</tr>
<tr>
<td>Gradient Boost</td>
<td>8.242</td>
<td>51.913</td>
<td>4.23</td>
</tr>
<tr>
<td>KNN</td>
<td>8.598</td>
<td>59.326</td>
<td>5.41</td>
</tr>
<tr>
<td>Decision trees</td>
<td>9.546</td>
<td>73.724</td>
<td>5.63</td>
</tr>
</tbody>
</table>

Table 4: Comparing the efficacy of several ML techniques for predicting the relative mass density.

<table>
<thead>
<tr>
<th>ML method</th>
<th>RMSE (HV)</th>
<th>MSE (HV²)</th>
<th>RE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KNN</td>
<td>2.08</td>
<td>0.0597</td>
<td>1.89</td>
</tr>
<tr>
<td>Gradient Boost</td>
<td>2.11</td>
<td>0.0605</td>
<td>1.87</td>
</tr>
<tr>
<td>Decision trees</td>
<td>3.12</td>
<td>0.0612</td>
<td>1.61</td>
</tr>
<tr>
<td>AdaBoost</td>
<td>3.06</td>
<td>0.0595</td>
<td>1.98</td>
</tr>
<tr>
<td>Extra Trees</td>
<td>3.01</td>
<td>0.04523</td>
<td>1.75</td>
</tr>
</tbody>
</table>

Figure 9: Hardness prediction of SiC/AlSi20Mg nanocomposites using (a) AdaBoost, (b) Extra trees, and (c) Decision tree in order of significance of features.

Figure 10: Predicting the (a) hardness and (b) relative mass density of SiC/AlSi20Mg composites utilizing sub-grain cellular structure characteristics and several ML algorithms.
Microstructure-property relationship prediction using PCA

To normalize the higher dimensional characteristics dataset (83 structures in our instance) with linked parameters, PCA employs a collection of linearly uncorrelated vectors to define the differences between the features. For this study, researcher uses the first three principal components to analyze the primary variances of the observations, therefore decreasing the dimensionality of the feature datasets (PC1, PC2, and PC3).

Hardness and relative mass density measurements of SiC/AlSi20Mg nanocomposites are reported, together with PCA model results. The impact of PCA decomposition on hardness prediction accuracy is shown in Figure 11 and Table 5. After PCA decomposition, Extra Tress from AdaBoost becomes the most effective ML algorithm. Reduced from 5.941 HV to 6.426 HV; increased from 35.245 HV2 to 39.912 HV2; and increased from 2.51% to 3.73% was the original RMSE, MSE, and RE, respectively. While PCA dimensional reduction can reduce prediction accuracy, it dramatically simplifies SEM image data registration, especially when dealing with moderate to large datasets.

Figure 12 and Table 6 depict the results of PCA relative mass density prediction. After PCA decomposition, the top-performing algorithm shifts from decision trees to AdaBoost. The initial RMSE was 2.41%, the MSE was 0.058%, and the RE was 1.59%; these were all reduced to 1.82%, 0.032%, and 1.53%, respectively. With the use of PCA, researcher can better estimate relative mass density since the PCA disintegration preserves the foremost shape and geometrical data of the primary properties.

Conclusions

The fabrication of SiC-reinforced AA2219 was accomplished with various laser powers and scanning rates. Laser melting was used to investigate the distinctive cellular microstructures of Al-Si eutectics and the densification behavior of these materials.

A segmentation framework for cellular structures was presented to get at the geometric characteristics of cells. Using ML, the relationships between microstructure and properties were investigated, leading to highly accurate hardness and relative mass density predictions. In this and related investigations, the microstructure-property connections of PFB-produced AlSi20Mg-based composites are being explored for the first time. Following is a brief synopsis of the study’s key results:

- The stretching of the melt pool pattern at the crack front of the cracked tensile specimen resulted in a microstructure with a high aspect ratio. They found that the nanocomposites have a SiC phase. Variations in crack propagation paths caused by melt pool borders and the cell structure of the material operate as the principal barrier to fracture formation.
- A significant link was discovered between the nanocomposites’ mechanical properties and their cellular structure sub-grain size. The dimensions and geometry of
a eutecticsub-cell change for different values of the laser parameters. All three measures of cellsize (area, perimeter, and length) are more significant for cells in the coarse cellular zone than those in the fine cellular zone.

- Image inversion, cell nuclei search, and cell creation were all crucial steps in properly segmenting cells in the cellular zone. Overall, SiC/AlSi20Mg nanocomposites contained 8.3 geometric features per cell across the fine and coarse cell zones. The mechanical characteristics of a nanocomposite sample may be predicted using just four microstructural characteristics: the perimeter, mean radius, eccentricity, and the Zernike moment 2.0.

- Predictions of mechanical properties of SiC/AlSi20Mg nanocomposites were successful using ML algorithms such as Extra Trees regressors, KNN, decision tree, gradient tree boosting, and AdaBoost, which all correlated mechanical characteristics with geometrical characteristics of cellular zone. The hardness and the relative mass density may be predicted using PCAs, with an inaccuracy of 3.73 and 1.53%, respectively.

Acknowledgements

None.

Conflict of Interest

None.

References

