Improvement of Concrete Strength by Addition of Novel Polypropylene Fiber in Comparison with Compressive Strength of Conventional Concrete

Eslavatha Thanmy and Muniyandi Tholkapiyan
Department of Civil Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India

Abstract

Aim: The major objective of this study is to increase the strength of ordinary cement concrete by adding novel polypropylene fiber by cement weight.

Method: A study of the impact of extra novel polypropylene fiber in regular Portland cement concrete has been attempted in an effort to enhance these attributes of plain concrete.

Results: Through the use of a compressive strength test at 28 days for concrete of the M25 grade, 4% of fibers in this experimental inquiry have been examined for their impact on the strength characteristics of concrete. The concrete cube mould size was taken as 150 mm x 150 mm x 150 mm cubical steel mold. The findings of the tests indicate that concrete with novel polypropylene fiber performs better than concrete alone. With the addition of novel polypropylene fiber to regular Portland cement concrete, the findings have shown an increase in compressive strength. Concrete added with novel polypropylene fiber at 4% had a mean compressive strength of 30.24 N/mm², compared to conventional concrete's 27.46 N/mm². The outcomes were examined using an independent sample t-test. Two groups of 36 samples taken for the test. The novel polypropylene fiber standard deviation for concrete was 4% and was 0.91737. The SPSS carried out has a significance of 0.000 (p < 0.05). This shows that there are the two groups' statistically significant differences considered in this study.

Conclusion: The results of the experimental study led to the conclusion that adding fibers to the concrete mixture very slightly increases the compressive strength.

Keywords
Novel polypropylene fiber, Cement, Coarse aggregate, Compressive strength, M25 grade, Concrete, Conventional concrete, Water

Introduction

Polycarboxylates (PCE) is a type of nanomaterial utilized in concrete, particularly as a high-range water reducer [1]. It is essentially a polymer composed of methoxy-polyethylene glycol copolymer acting as a secondary or side reaction, reinforced with methacrylic acid copolymer as the main component [2]. The carboxylate group within PCE provides a negative charge along its backbone, while the polyethylene oxide group contributes to a non-uniform distribution of electron cloud, imparting chemical polarity to the secondary or side reaction [3]. The length and number of secondary reactions can be adjusted easily, but excessive electron units in these reactions may reduce their molar mass, affecting the polymer's density and resulting in poor performance in cement suspensions [4].

In concrete applications, PCE serves to control the workability of concrete at low water-to-cement ratios [5-7]. Its inclusion can lead to the production of
self-compacting concrete, which enhances workability and produces a flowable concrete, particularly beneficial in low and high-intensity placement areas [8-10]. Additionally, PCE aids in marine structure applications by improving concrete density through air bubble removal, thereby reducing pores or voids in ultra high-performance concrete (UHPC) and providing a more compact structure. This refinement of the microstructure reduces permeability, mitigating the effects of seawater elements like sulfates and chlorides [11-13].

The utilization of PCE is considered environmentally friendly compared to other additives like silica fume. Studies have shown that incorporating PCE in high strength concrete improves workability and performance compared to silica fume. Moreover, PCE can reduce dependency on other materials in UHPC by up to 70%, including silica fume, superplasticizers, and fibers [14]. The inclusion of PCE in UHPC significantly enhances strength performance, with reports indicating rapid strength gains at early ages, such as doubling the strength from 40 to 80 MPa within one day [15]. By day 28, strengths of 70 - 100 MPa can be easily achieved with lower PCE dosages, demonstrating its efficacy as an alternative admixture for enhancing concrete strength. Its ease of handling and minimal guidelines or techniques required make PCE a popular choice among nano materials for adoption in UHPC [16].

In conventional concrete, nanomaterials were believed to improve strength [17]. Due to the improved dispersion of nanomaterials in concrete, the use of PCE shows improved mechanical properties. In addition to the agglomeration caused by carbon nanotubes, PEC compressive strength, slump value, consistency, etc. have been improved [18]. Silica nanoparticles are generally made from microparticles. It is similar to the performance strength and durability enhancements created by micro or nano silica in UHPC. Nano silica was added to concrete to increase its strength compared to silica fume alone. The use of nano alumina in concrete has been studied only in a limited number of studies. Concrete properties can be greatly affected by nano alumina in concrete, especially UHPC, since it controls cement setting time [17].

Materials and Method

The Saveetha School of Engineering in Chennai’s Civil Engineering Department completed the entire project. The following samples were created by molding each mixture in accordance with the goals of the related tests and this study: Five 150 x 150 x 150 mm cubes of each size, each mixed with 4% by volume of cement for traditional concrete and novel polypropylene fibers, were used to evaluate the compression test. Figure 1 depict the polypropylene fiber materials and cement.

The construction of a concrete cube mold is shown in figure 2. The concrete was put in two layers and, in order to accomplish the best consolidation and compaction, vibrated at a frequency of 50 Hz.

The curing of specimens in the fog room takes place having a temperature range between 22 °C - 24 °C. In the fog room, where the temperature ranges from 22 °C to 24 °C, specimens are cured. Concrete cube curing is depicted in figure 3.

The samples underwent a 28-day temperature cure in a regulated water tank after being extruded. Seven distinct combinations were taken into consideration since the study’s goal was to explore the performance characteristic of FRC. The proportion of fiber by volume in each combination, with consistent amounts of water, admixture, fine and coarse aggregate, and cement content. The effectiveness of the fiber reinforcing can be assessed using two parameters, namely the composite’s increased strength and toughness when compared to its brittle matrix. The confidence interval is 95%, alpha value is 0.02 and beta is 0.05. The standard deviation and mean to be found through the independent t-test results mentioned in the statistical report.

Two varieties of “novel polypropylene fiber” were utilized to study the effects of different fibers and their volume fractions in concrete matrices. The M25 mix design, which was used as a reference for concrete mixes, was determined to be the best mix design for the purposes of the current study. With
Improvement of Concrete Strength by Addition of Novel Polypropylene Fiber in Comparison with Compressive Strength of Conventional Concrete

Thanmy and Tholkapiyan.

Results

The results showed that adding novel polypropylene fiber to regular Portland cement concrete improved its compressive strength and flexural strength. The mean compressive strength of 4% addition of novel polypropylene fiber with concrete was 30.24 N/mm2 and the compressive strength of conventional concrete was 27.46 N/mm2. Independent sample t-test was performed to analyze the results. Group data for a 10% polypropylene fiber concrete sample group. Standard deviation (1.07541, 0.91737), mean (27.4633, 30.2422), and standard error mean (0.25348, 0.21623). Results of the independent samples t-test for concrete with 10% polypropylene fiber: Compressive strength did not show a statistically significant difference in an independent sample t-test ($p = 0.000$), since it was higher than $p = 0.05$. Standard deviation for 4% addition of novel polypropylene fiber was 0.91737. The event’s significance was $p = 0.000$ ($p < 0.05$). The compressive strength of typical concrete of M25 grade is shown in table 1. Table 2 also displays the compressive strength of concrete with new polypropylene added that is M25 grade.

Table 3 compares the results of the conventional concrete and conventional concrete with Levene’s test for equality of variances 4% polypropylene added to it, with a p-value of 0.05 and an error of 95%. Table 4 displays the analysis of the group statistics.

Discussion

Similar to random distribution along the length of the structural member, the fiber reinforcement can be applied in a variety of ways. The rise in shear resistance value, which fur-
ther controls crack, is an advantage of this modification. In addition, if the fiber reinforced concrete is orientated dimensionally, it can be employed as tensile members to balance the steel reinforcement. Conventional concrete strengths at standard pressure and temperature.

Strength of steel fiber reinforced concrete compared to regular plain cement concrete. Comparison of the strengths of novel polypropylene fiber reinforced concrete and regular plain cement concrete. Strengths of steel and a novel polypropylene fiber reinforced concrete are compared to one another. Comparative statistical methods that are helpful for all strengths, including those of traditional concrete and with the time allotted and the laboratory set up available, efforts have been made in this study to clarify how to employ so-called fiber reinforced concrete to the best of their abilities. It was determined: Using a superplasticizer, it is possible to obtain a mix with a low cement to water ratio and still achieve the appropriate strength. The maximum result for 28 days of compressive strength at 3% fiber content was achieved in the case of novel polypropylene fiber reinforced concrete to the best of their abilities. It was determined: Using a superplasticizer, it is possible to obtain a mix with a low cement to water ratio and still achieve the appropriate strength. The maximum result for 28 days of compressive strength at 3% fiber content was achieved in the case of ordinary Portland cement using steel fiber.

The compressive strength of novel polypropylene fiber in nominal concrete is 11% lower than that of steel. The compressive strength gradually rises after 1%, 2%, and 3% of mixing fibers (i.e., steel and novel polypropylene). Increasing the percentage of fibers for both aspect ratios will therefore result in small variations. Compressive strength alters the maximum limit in aspect ratio 60 as aspect ratios change, such as 50 and 60. This demonstrates that more fiber length will result in greater compressive strengths. No changes in strength will occur if there is no mixing of the fibers. Because novel polypropylene has the highest flexural strength, employing its fibers for casting beams is beneficial. For novel polypropylene fibers, the fiber orientations also produce good results. Because it is more flexible and capable of resisting loads that are evenly distributed than steel. Steel and novel polypropylene fibers exhibit a significant difference in flexural strength for aspect ratios of 60 and 60. When comparing steel and novel polypropylene, the split tensile strength for aspect ratio 50 varies by 10%. In contrast, there is a 20% fluctuation in aspect ratio for 50 innovative polypropylene fibers. A large difference between steel and novel polypropylene fibers may be seen in the flexural strength for aspect ratio 60. When comparing the split tensile strength for materials with an aspect ratio of 50, steel and novel polypropylene differ by 10%. As opposed to aspect ratio 50, there is a 20% difference in the same. The property of plasticity FRCs in novel polypropylene fibers makes them more effective in tensile zones.

Conclusion

The mean compressive strength of concrete with 4% novel polypropylene fiber addition was 30.24 N/mm², the conventional concrete compressive strength of 27.46. This compressive strength test results shows the better performance while adding the fiber in concrete and gives a more durability and stability to the concrete. Compressive strength improved by 10.12% as compared to conventional concrete.
Acknowledgements
None.

Conflict of Interest
None.

References
9. Dispersion characteristics of montmorillonite, kaolinite, and hwhy clays in waters of varying quality, and their control with phosphate dispersants.