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Abstract
Single crystals of the novel phosphate (Cd,Co)5(HPO4)2(PO4)2.4H2O have 

been elaborated under mild hydrothermal conditions and analyzed by single-crys-
tal X-ray diffraction. The title compound crystallizes in the Hureaulite-type 
structure (space group C2/c, a = 17.5744(9) Å, b = 9.0723(5) Å, c = 9.4866(5) 
Å, β = 96.67(3)°, V = 1502.3(1) Å3 and Z = 4). This structure exhibits a cations 
positional disorder at two sites. The first one is located on the special Wyckoff 
position 4e(2) and is fully filled by a mixture of Cd(2)2+/Co(2)2+ with a respec-
tive occupancy ratio of 0.34/0.66. The second one is located on the general posi-
tion 8f, fully occupied by both Cd(1)2+/Co(1)2+. The principal building units are 
more or less distorted [(Cd(1)/Co(1))O5(OH2)], [(Cd(2)/Co(2))O6], and [Co(3)
O4(OH2)2] octahedra with two kinds of regular PO4 and HPO4 tetrahedra. This 
crystal structure results from octahedral pentameric units M5

IIO16(OH2)6 made 
up of edge-sharing extending parallel to [001] direction. These adjacent enti-
ties are interconnected and also linked to each other by the connecting PO4 and 
HPO4 units via common corners so as to build a three-dimensional framework 
delimiting large holes along the c-axis hosting the water molecules. Bond-va-
lence-sum (BVS) and charge-distribution (CD) methods were applied to validate 
the suggested structural model.

Keywords
Hureaulite structure, Novel phosphate, X-ray diffraction

Introduction
Nowadays, transition metal-based phosphates are among the most investigat-

ed classes of materials. This craze for such phases is supported by their structural 
richness, their topological diversity and undoubtedly their interesting physical 
properties [1]. Such assets are directly tied to the particular features of the PO4, 
HPO4 groups and the metallic polyhedra. The organization of such units provides 
the crystal structures with a high thermal, chemical, and mechanical stability, 
thus giving rise to suitable interstitial spaces, which can contain cations of differ-
ent sizes and/or small molecules [2]. In addition, materials comprising hydroxyl 
(OH)- and non-zeolitic (H2O) groups offer a wide range of uses and interesting 
structural variants. Indeed, hydrated phosphates are essential for the development 
of supercapacitors [3], steel’s surface hardening [4] and the removal of arsenic 
(As) from water [5]. Furthermore, the combination of transition metals results 
in outstanding inhibitory, electrochemical, optical, and magnetic characteris-
tics [6]. In line with our hydrothermal investigations of metal orthophosphates, 
we have already synthesized and analyzed a variety of compounds with vari-
ous three dimensional frameworks viz. Mg7(PO4)2(HPO4)4 [7], Co2Pb(HPO4)
(PO4)OH.H2O [8], M2Mn3(HPO4)2(PO4)2 (M = Pb [9], Sr [10]), Ag2M’3(H-
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Atomic positions and the corresponding displacement 
parameters are reported in table 2. Number of inter-atomic 
bond lengths are given in table 3 and geometrical features of 
hydrogen bond are listed in table 4. All representations were 
performed with Vesta-3 [26].

Structural description

In general, the structure of Hureaulite can be described 
as an open three-dimensional network of vertice-sharing 
octahedral-pentameric units with PO4 and HPO4 entities 
[27]. Similarly, the main building groups in the structure 
of (Cd,Co)5(HPO4)2(PO4)2.4H2O are two conventional 
PO4/HPO4 tetrahedra and three [(Cd(1)/Co(1))O5(OH2)], 
[(Cd(2)/Co(2))O6], and [Co(3)O4(OH2)2] octahedra of 
different distortion levels. This crystal structure can be 
described as five sequential octahedral M5

IIO16(OH2)6 units 
of edge-sharing (Co(3)-Cd(1)/Co(1)-Cd(2)/Co(2)-Cd(1)/
Co(1)-Co(3)) extending along the [100] direction (Figure 1). 
These units are interlinked by common vertices of [(Cd(1)/
Co(1))O5(OH2)], [Cd(3)O4(OH2)2], PO4, and HPO4 
polyhedra in order to create a significant void parallel to the 
[001] direction. This interstitial space hosts the terminal H2O 
molecules of the [Co(3)O4(OH2)2] groups (Figure 2), which 
interact with the neighboring oxygens by forming weak O—H-
--O hydrogen bonding. The O-H bond lengths and O-H..O 
bond angles reported for this compound are in line with those 
observed for some phosphates, viz. SrFe(HPO4)(PO4) [15], 
Co2Pb(HPO4)(PO4)OH.H2O [8], AgMg3(HPO4)2(PO4) 
[13] and Mg1.74Cu1.26(PO4)2.H2O [28]. 

PO4)(PO4)2 (M’ = Co [11], Ni [12]), AgMg3(HPO4)2(PO4) 
[13], AgSr4Cu4.5(PO4)6 [14], and SrFe(HPO4)(PO4) [15]. 
The systematic research within CdO-CoO-P2O5-H2O also 
received significant attention, leading to the novel phosphate 
(Cd,Co)5(HPO4)2(PO4)2.4H2O that adopts the Hureaulite 
structure type. The Hureaulite mineral (Mn,Fe)5(PO4)2(H-
PO4)2.4H2O was initially found by Alluaud [16], described 
by Dufrénoy [17] and then structurally solved by Moore and 
Araki [18]. Isotypic phases belonging to this family crystal-
lize in the monoclinic system with the C2/c space group and 
can be designated by the following general chemical formula: 
XY2Z2(TO4)2(HTO4)2·4(H2O), where X = Ca, Mn, Cd; Y = 
Cd, Fe, Ca, Mn; Z = Mn, Fe, Ca, Zn and T = P or As [6]. This 
paper deals with the hydrothermal elaboration and structur-
al characterization of the new Cd/Co-Hureaulite compound 
(Cd,Co)5(HPO4)2(PO4)2.4H2O.This crystal structure was elu-
cidated by means of single crystal X-ray diffraction and the ac-
curacy of the provided  structural model was confirmed using 
the BVS [19] and CD analysis [20].

Experimentation
Elaboration

This new phase’s single crystals were elaborated hydro-
thermally using a proper reaction mixture of Co, CdCl2, and 
H3PO4 (85% by weight) proportioned in accordance with the 
molar ratios of Co:Cd:P = 2:1:2. The hydrothermal process 
was performed under mild conditions at 468 K over 4 days in 
a suitable autoclave reactor with a 23 ml PTFE lined vessel 
half filled with deionized water. The reaction product under-
went filtering, a distillated water rinse, and room-temperature 
drying. The obtained purple crystals are consistent with this 
novel phase. The structure is determined at nanometric scale.

Results and Discussion
Structure determination

An appropriate single crystal was mounted on a Bruker 
X8 APEXII diffractometer for the X-ray diffraction measure-
ments. The data was gathered using the X-ray Mokα radiation 
and the φ/ω scan modalities on the full sphere of reciprocal 
space. The obtained results were then adjusted for Lorentz and 
polarisation effects using the SAINT program [21]. As a re-
sult of further absorption corrections (Multi-scan) performed 
using SADABS program [22] a total of 10968 intensities, of 
which 2449 are independent and 2098 meets the I > 2(I) con-
dition were obtained successfully. The structural elucidation of 
this novel phosphate was carried out using the WinGX suite 
[23]. This crystal structure was first solved by Direct Methods 
with the SHELXT 2014/7 program [24] and subsequently 
refined with the SHELXL2018/3 program [25]. The posi-
tioning of Cd, Co, and P atoms was carried out according to 
structural resolution. The rest of oxygen and hydrogen atoms 
were introduced to fill the asymmetric unit following multi-
ple iterative refinements and a Fourier-difference analysis. The 
residual electron densities after the last refinement cycle are 
Δρmin = -0.81 e.Å-3 at 0.88 Å from Co1 and Δρmax = 0.69 e.Å-3 
at 0.19Å from H6. Crystallographic characteristics, data ac-
quisition details and structural refinement results are given in 
table 1.

Table 1: Crystal details, X-ray data collection and structure refinement re-
sults for (Cd,Co)5(HPO4)2(PO4)2.4H2O.

Crystallographic details
Chemical formula (Cd,Co)5(HPO4)2(PO4)2.4H2O

Mr 846.46
System, space group Monoclinic, C2/c

T (K) 296
a, b, c (Å) 17.5744 (9), 9.0723 (5), 9.4866 (5)
β (°) 96.671 (3)

V (Å3) 1502.3 (2)
Z 4

Mo Kα λ = 0.71073 Å
μ (mm-1) 6.52

Data acquisition
Diffractometer Bruker X8 APEX 2
θmin , θmax (°) 2.3, 31.3

Miller indices -25 ≤ h ≤ 25, -13 ≤ k ≤ 13, -13 ≤ l ≤ 13
Measured reflections 10968

Independent reflections 2449
Reflections with I > 2σ (I) 2098  

Rint 0.037
(sin θ/λ)max (Å-1) 0.732

Refinement
R[F2 > 2s(F2)], wR(F2), S 0.025, 0.055, 1.04

Number of variables 150
Δρmax, Δρmin (e Å-3) 0.69, -0.81
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According to the distribution of cationic charges over 10/20 
distinct crystallographic positions, (Cd2+/Co2+), Co2+, P5+, and 
H+ entirely fill their corresponding sites. To ensure charge 

Analysis of the structural model

In this paper, the BVS and CD analysis tools were used 
to evaluate the reliability and stability of the given structural 
model of (Cd,Co)5(HPO4)2(PO4)2.4H2O. The ionic charge 
repartitions and the BVS results were provided by the 
CHARDI-2015 [29] and EXPO-2014 programs [30], 
respectively (Table 5).

In this structure, all atoms occupy the general positions 8f 
of the C2/c space group (No. 15), excluding (Cd2/Co2), that 
are located at a particular position 4e on a 2-fold rotation axis. 

Table 2: Atomic coordinates and isotropic or equivalent thermal parameters (Å2) in (Cd,Co)5(HPO4)2(PO4)2.4H2O.

Atom Site x y z Uiso*/Ueq Occ. (<1)
Cd1 8f 0.17512 (2) 1.02908 (3) 0.86715 (2) 0.01061 (8) 0.746 (3)
Co1 8f 0.17512 (2) 1.02908 (3) 0.86715 (2) 0.01061 (8) 0.254 (3)
Cd2 4e 0.000000 1.10659 (5) 1.250000 0.0105 (2) 0.340 (4)
Co2 4e 0.000000 1.10659 (5) 1.250000 0.0105 (2) 0.660 (4)
Co3 8f 0.31723 (2) 0.91445 (4) 0.68606 (4) 0.0099 (2)
P1 8f 0.16150 (4) 0.73466 (8) 0.62584 (7) 0.0096 (2)
P2 8f 0.08203 (4) 0.81870 (8) 1.09049 (7) 0.0102 (2)
O1 8f 0.0770 (2) 0.7327 (2) 0.6568 (2) 0.0134 (4)
O2 8f 0.1642 (2) 0.7532 (2) 0.4645 (2) 0.0149 (4)
O3 8f 0.2013 (2) 0.5905 (2) 0.6741 (2) 0.0139 (4)
O4 8f 0.2047 (2) 0.8636 (2) 0.7043 (2) 0.0147 (4)
O5 8f 0.0839 (2) 0.8848 (2) 0.9426 (2) 0.0167 (4)
O6 8f 0.0104 (2) 0.7142 (2) 1.0816 (2) 0.0183 (5)
H6 8f 0.013984 0.650869 1.020986 0.027*
O7 8f 0.1536 (2) 0.7274 (2) 1.1375 (2) 0.0165 (4)
O8 8f 0.0753 (2) 0.9354 (2) 1.2021 (2) 0.0187 (5)
O9 8f 0.2641 (2) 1.0817 (3) 0.5362 (2) 0.0158 (4)

H9A 8f 0.245 (3) 1.147 (5) 0.587 (5) 0.04 (2)*
H9B 8f 0.291 (3) 1.129 (5) 0.488 (5) 0.04 (2)*
O10 8f 0.4196 (2) 1.0049 (3) 0.6569 (3) 0.0214 (5)

H10A 8f 0.435 (3) 1.060 (7) 0.713 (7) 0.08 (2)*
H10B 8f 0.455 (3) 0.959 (6) 0.645 (5) 0.05 (2)*

Table 3: Chosen bond lengths in (Cd,Co)5(HPO4)2(PO4)2.4H2O.

Note: Symmetry indicators: (a) x, -y+2, z+1/2; (b) x, -y+2, z-1/2; (c) -x+1/2, 
y+1/2, -z+3/2; (d) -x, -y+2, -z+2; (e) -x, y, -z+5/2; (f ) -x+1/2, -y+3/2, -z+2; 
(g) -x+1/2, -y+3/2, -z+1; and (h) -x+1/2, y-1/2, -z+3/2.

Bond Length (Å) Bond Length (Å)
Cd1/Co1—O2a 2.199 (2) Co3—O4 2.058 (2)
Cd1/Co1—O8b 2.234 (2) Co3—O3c 2.125 (2)
Cd1/Co1—O5 2.250 (2) Co3—O7f 2.126 (2)
Cd1/Co1—O4 2.257 (2) Co3—O2g 2.137 (2)
Cd1/Co1—O3c 2.320 (2) < Co3—O> = 2.1138 Å
Cd1/Co1—O9a 2.333 (2) P1—O3 1.528 (2)

< Cd1/Co1—O> = 2.2655 Å P1—O4 1.539 (2)
Cd2/Co2—O8 2.124 (2) P1—O2 1.546 (2)
Cd2/Co2—O8e 2.124 (2) P1—O1 1.546 (2)
Cd2/Co2—O5a 2.212 (2) < P1—O> = 1.5396 Å
Cd2/Co2—O5d 2.212 (2) P2—O8 1.512 (2)
Cd2/Co2—O1a 2.240 (2) P2—O7 1.529 (2)
Cd2/Co2—O1d 2.240 (2) P2—O5 1.530 (2)

< Cd2/Co2—O> = 2.1921 Å P2—O6 1.571 (2)
Co3—O10 2.025 (3) < P2—O> = 1.5353 Å
Co3—O9 2.211 (2)

Table 4: Hydrogen-bond geometry (Å, º) in (Cd,Co)5(H-
PO4)2(PO4)2.4H2O.

Note: Symmetry indicators: (a) x, -y+2, z-1/2; (b) -x+1/2, y+1/2, -z+3/2; (c) 
-x+1/2, y-1/2, -z+3/2; and (d) x+1/2, -y+3/2, z-1/2.

D—H···A (º) D—H (Å) H···A (Å) D···A (Å) D—H···A (º)
O6—H6···O10c 0.82 2.53 3.299 (3) 156
O9—H9A···O7a 0.86 (5) 2.07 (5) 2.850 (3) 151 (4)
O9—H9B···O7b 0.82 (5) 1.85 (5) 2.666 (3) 174 (5)

O10—H10A···O1b 0.76 (7) 2.02 (7) 2.715 (3) 153 (6)
O10—H10B···O6d 0.77 (5) 1.98 (5) 2.696 (3) 155 (5)

Table 5: BVS and CD analysis in (Cd,Co)5(HPO4)2(PO4)2.4H2O.

Note: C(j) = oxidation state; SO(j) = site occupancy factor; CN(j) = coordi-
nation number; Q(j) = computed charge; BVS(j) = computed valence; and 
ECoN(j) = effective coordination number.

Ion C(j).SO(j) CN(j) ECoN(j) BVS(j) Q(j) C(j)/Q(j)
Co(1)/
Co(1) 2 6 5.91 1.98 1.88 1.07

Cd(2)/
Co(2) 2 6 5.89 1.84 1.82 1.10

Co(3) 2 6 5.83 1.68 1.98 1.01
P(1) 5 4 4.00 4.93 5.24 0.95
P(2) 5 4 3.97 5.00 4.70 1.06
H6 1 1 1.00 1.16 0.94 1.06

H9A 1 1 1.19 1.08 0.86 1.16
H9B 1 1 1.28 1.15 0.87 1.14

H10A 1 1 1.13 1.03 0.86 1.17
H10B 1 1 1.10 1.03 0.85 1.17
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balance, the oxygen atoms are arranged in the remainder of 
positions. All computed charges Q(j)cations are in complete con-
formity with their corresponding weighted oxidation numbers 
Q(j).SO(j). Also their charge ratios (C(j)/Q(j))cations ≈1 which 
proves the accuracy of this repartition scheme. This result is 
also supported by the lower deviation of Q(j) from C(j) which 
is corroborated by the absolute mean (MAPD) of 8.8%. By 
carefully analyzing the calculated cationic BVS(j) against their 
theoretical valences V(j), the BVS approach also leads to the 
predicted values with a good overall instability index (GII = 
0.080 v.u). In this structure, the first positive site is completely 
filled by the cobalt Co2+(3) while (Cd2+(1)/Co2+(1)), (Cd2+(2)/
Co2+(2)) cations occupy each other’s two mixed sites with the 
respective occupancy rates of 0.2/0.5 and 09/05. These sites are 
tightly bounded with six surrounding oxygen atoms, produc-
ing more or less distorted octahedra with a considerable trac-
tive stress. This fact is  supported by bonds valences BVS(M) 
< V(M) [31] and the distortion index (bond length) values (

6

i
i 1

(M O) M O
BLD

6 M O
=

− − −
=

−

∑  where M = Co2+ or Cd2+/Co2+) BLDCd(1)/Co(1) = 
0.01793, BLDCd(2)/Co(2) = 0.02071 and BLDCo(3) = 0.02275 [32]. 
According to the coordination values of ECoN (Pi)/CN(Pi) 
(I = 1 or 2), both P atoms are arranged in a typical tetrahedral 
geometry. The last crystallographic sites are filled by H6, H9A, 
H9B, H10A, and H10B cations which form weak hydro-
gen bonds with suitable coordination of ECoN(H6) = 1.00, 
ECoN(H9A) = 1.19, ECoN(H9B) = 1.28, ECoN(H10A) = 
1.13, and ECoN(H10B) = 1.10 [33].

Conclusion
Single crystals of the novel phosphate 

(Cd,Co)5(HPO4)2(PO4)2.4H2O, belonging to the Hureaulite 
family, were synthesized by the hydrothermal process and 
studied by single crystal X-ray diffraction. The adequacy of 
the resulting structural model was confirmed by BVS and 
CD analyses. This net-framework is made up of sequential 
octahedral M5

IIO16(OH2)6 edge-sharing units (MII = Co or 
Cd/Co) running along the [100] direction. These units are 
joined by common vertices of [(Cd(1)/Co(1))O5(OH2)], 
[(Cd(3)O4(OH2)2], PO4, and HPO4 polyhedra to generate a 
sizeable cavities parallel to the [001] direction. This interstitial 
space contains the terminal H2O molecules of the [Co(3)
O4(OH2)2] groups, that react with adjacent oxygen atoms by 
forming a weak O-H--O hydrogen bonding.
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