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Abstract
Black nanocarbon developed from bamboo (Gigantochloa scortechinii) was 

utilized as reinforcement for two thermoplastic polymers. The nanocomposites 
of polypropylene (PP) and polyamide-6 (PA-6) were synthesized by applying 
a coagulation scheme. Methanol was used as a coagulant for the nanocompos-
ite preparation. Comparative analysis was accomplished with three percent fill-
er mixing. Structural interpretation of the nanocomposite was carried out using 
Fourier-transform infrared (FTIR) spectroscopy. The investigation of the thermal 
and melting behavior of the nanocomposites was performed using thermogravi-
metric analysis (TGA) and differential scanning calorimetry (DSC) techniques. 
The obtained results of the respective nanocomposite were interrelated to the neat 
PP and PA-6. A comparative investigation was done on the effective role of filler 
in each of the two polymers. The thermal analysis revealed that nanocomposites 
were stable at higher weight loss temperatures compared with their neat compos-
ites. The two nanocomposites presented a different change in thermal properties 
with the same amount of the filler. DSC analysis disclosed the lowering in heat 
of melting of the coagulation processed products.
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Introduction
The carbon products with high surface area and porous morphology are uni-

versal and ubiquitous in modern-day technical research and scientific develop-
ment [1, 2]. Activated carbon-based materials have presented remarkable con-
sideration and exhibited fantastic aptitudes in many disciplines. This owed to 
exceptional properties including elevated surface area, variable pore size, range of 
monodispersed outer pore space, different pore shapes, uniform nanosized frame-
works, variable particle sizes, and abundant compositions [3]. 

The insidious applications of carbons product are recognized due to their in-
credible physicochemical characteristics, including advancing the hydrophobicity 
of the surfaces, superior corrosion endurance, great thermal constancy, improved 
surface area, good mechanical permanence, easy treatment, and little manufac-
turing cost [4]. Carbon black has enticed valuable consideration for its favor-
able applications in numerous fields concerning catalyst support, adsorption and 
isolation of bulky biomolecules, electrical devices with double-layer capacitors, 
purification of wastewater, and air treatment plants [5]..

Biomass products have been manufactured and obtained valuable interest as 
active electrode material and supercapacitor applications [6]. The raw carbona-
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erties of the nanocomposites synthesized with carbon black of 
the bamboo plant. Comparative changes were investigated at 
fixed loading of filler and an assessment of thermal and melt-
ing behavior was made with the neat polymer.

Experimental
Materials and reagents

PP powder (Molecular weight ¼ 28.9 x 104 g mol-1, 
polydispersity = 3.45, isotactic) was purchased from ABV 
Global Holdings Sdn Bhd, PA-6 pellets were obtained from 
Sigma Aldrich (density = 1.084 g/ml at 25 °C). Dimethyl sulf-
oxide (DMSO) Extra pure SLR was supplied by Fischer Sci-
entific (b.p. = 189 °C), Xylene reagent grade (b.p. = 137 - 140 
°C), and methanol was obtained from Sigma-Aldrich (b.p. = 
64 °C) and used as received. The black nanocarbon (CB) of 
the bamboo plant was received from Future Food, Japan with 
3000 super tiny mesh sizes.

Preparation of CB@nanocomposite

CB@PP and CB@PA-6 nanocomposites synthesized us-
ing the coagulation technique are presented in figure 1. 0.97 
g of PP was dissolved in 50 ml xylene using a hot plate at 120 
°C for 30 minutes. Similarly, 0.97 g of PA-6 was dissolved 
in DMSO at 270 °C utilizing a hot plate. 0.03 g of CB was 
separately mixed in two solvents i.e., DMSO and xylene. The 
filler was homogeneously mixed in the solvents for 30 minutes 
using ultrasonication to get homogeneous dispersion. The two 
polymeric solutions were mixed with respective filler disper-
sion using ultrasonication for another 30 minutes. 50 ml of 
methanol was added into both polymeric solutions with con-
tinuous mixing. After filtration, the two flocculate products 
were dried at 80 °C under a vacuum.

Characterization

Three characterization techniques were utilized to analyze 
the structural, thermal, and morphological properties of CB@
PP and CB@PA-6 nanocomposites. FTIR spectra were re-
corded on an FTIR instrument, Perkin Elmer (FTIR Fron-
tier) using KBr solid-state analysis. Thermal characterization 
was performed using Perkin Elmer (STA6000) thermobal-
ance, at a heating rate of 10 °C/min under N2 atmosphere up 
to a maximum temperature of 600 °C. DSC analysis test was 
performed under N2 using Perkin Elmer (Pyris-1) instrument. 

ceous biomaterial is transformed into activated black carbon/
char [7]. The intended use of the subsequent product is de-
pendent on the treatment path for activation and selection of 
the raw material. In common, the shrinkage of the cellulose 
precursor takes place during carbonization which plays a sig-
nificant role in the property development of the end product 
[8, 9].

Carbon products are usually synthesized in an econom-
ic way employing the carbonization of agricultural waste. The 
lignocellulosic waste material of fruit stones, twigs, and shells 
have demonstrated to be exceptional for the fabrication of 
activated carbons materials because of their high-level car-
bon content, smaller inorganic contaminations, and adequate 
hardness [10, 11]. There is widespread use of bio-based fillers 
in polymers for aerospace devices, electronic and conductive 
applications, chemical modifications, heavy metal purification 
treatment, filters, and absorbents [12, 13]. 

Biobased thermoplastic polymer composites are routinely 
fabricated. PP and PA-6 are practical thermoplastics due to 
their superior wear resistance, excellent coefficient of friction, 
and extremely good temperature resistance and impact prop-
erties [14, 15]. They are utilized in surface protection, fittings, 
connectors, and cable protection systems [16]. These thermo-
plastics possess low density, enduring strength, mechanical 
properties, and heat resistance, due to which they are exten-
sively employed in industries like aircraft, automotive parts, 
and aerospace [17, 18]. 

The physical properties of thermoplastics can be improved 
by the addition of organic and inorganic nano-filler during 
composite formation [19]. The effective use of many thermo-
plastic polymers has been hampered due to their inadequa-
cies in thermal stability and flame-resistant properties [20]. 
These properties owe considerable interest and modification 
in properties is achieved by the introduction of nanofillers via 
composite formation [21, 22]. Composite fabrication modifies 
the substrate by the creation of physical interaction with the 
polymer matrix [23]. 

In the current work activated carbon black obtained from 
the bamboo plant was used as filler in two industrial ther-
moplastic polymers. Considering nanocomposite fabrication 
a useful approach the research was focused on nanocomposite 
synthesis using the coagulation method. The research was fo-
cused to explore the thermal, spectroscopic, and melting prop-

Figure 1: Samples (a) PP, (b) PA-6, (c) CB@PP, and (d) CB@PA-6.
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ylene stretching vibration was observed at 2930 cm-1 in the 
functional group region and the corresponding bending vibra-
tion was present at 1264 cm-1. The carbonyl moiety of the am-
ide group presented its characteristic peak at 1642 cm-1 with 
medium intensity. The carbon atoms attached to the C=O 
bond have an absorption at 1023 cm-1. The C-N functionality 
exhibited its distinctive peak at 1539 cm-1.

Thermal analysis of samples

Figure 3 presents TGA thermograms of coagulation-pro-
cessed nanocomposites under N2 atmosphere. The detailed 
data are elaborated in table 3. The thermal stability of the 
synthesized nanocomposite was assessed in terms of observed 
temperature at different weight loss i.e., 5 % weight loss (T5), 
10% weight loss (T10), final degradation (Tf), and residual 
weight at Tf (Rf). The comparison of each nanocomposite was 
made with the neat thermoplastic polymer. 

It was revealed that adding the same percentage of the 
CB of the bamboo plant has shown different trends in ther-
mal stability. Using three percent filler loading the thermal 
stability of CB@PP has increased compared with neat poly-
mer however adding the same content to the PA-6 polymer 
shows an anomalous trend. All the neat and nanocomposite 
samples were observed to be stable above 450 °C. CB@PP 
compared to PP presented a rise in T5 and T10 of 45 °C and 15 
°C, respectively. On the contrary, CB@PA-6 showed a drastic 
decline in initial weight loss temperature. There is a fall of 308 
°C and 301 °C in T5 and T10, respectively.

This behavior revealed the fact CB filler is not playing a 
supportive role for PA-6 for initial degradation. It is assumed 
that the filler has reduced the thermal stability at initial weight 

The samples were heated from 50 - 400 °C at a heating rate 
of 10 °C/ min. 

Results and Discussion
FTIR analysis of the samples

CB@PP and CB@PA-6 nanocomposites were synthe-
sized using the coagulation technique. An investigation of 
spectroscopic analysis was done using FTIR characterization. 
The results of FTIR spectra obtained from 4000 - 500 cm-1 
on the instrument are given in table 1 and table 2, respectively. 
The obtained spectra are given in figure 2.

In the spectra, of CB@PP peaks of C-H aliphatic stretch 
were very sharp and observed at 2906 cm-1 and 2849 cm-1. 
These peaks are assigned to asymmetric and symmetric vibra-
tions of the C-H bond.  The characteristic peak for -CH2- 
bending vibrations is present at 1468 cm-1. In the fingerprint 
region, two peaks were observed for the rocking vibration of 
methylene bonds. One present at 713 cm-1 was assigned to the 
crystalline nature and the other one at 569 cm-1 was attributed 
to the amorphous character of the substrate.

CB@PA-6 presented representative peaks in fingerprint 
and functional group regions. The peak due to the amidic N-H 
bond was very intense and present at 3425 cm-1. The meth-

Table 1: FTIR data of CB@PP. 
Wavenumber (cm-1)

Sample
C-H  

(Aliph 
Stret)

C-H  
(Aliph 
Stret)

-CH2- 
(Bend)

Meth  
(Cry, 

Rock)

Meth  
(Amp, 
Rock)

CB@
PP 2906 (s) 2849 (s) 1468 

(m) 713 (m) 569 (m)

Note: Aliph = Aliphatic, Meth = Methylene, Stret = Stretching, Amp 
= Amorphous, Cry = Crystalline, Bend = Bending, Rock = Rocking, s = 
Sharp, m = Medium.

Table 3: TGA data of neat polymers and their nanocomposites.

Compounds T5 (°C ) T10 (°C ) T50 (°C ) Tf (°C ) Rf (%)

PP 347 410 460 498 2.8
CB@PP 394 420 461 590 20.6

PA-6 377 400 437 479 10.4
CB@PA-6 69 98 435 571 0.3

Table 2: FTIR data of CB@PA-6.

Note: Stret = Stretching, Bend = Bending, Rock = Rocking, s = Sharp, m 
= Medium.

Wavenumber (cm-1)

Sample N-H 
(Stret)

-CH2- 
(Stret)

C=O 
(Stret)

C-N 
(Stret)

-CH2- 
(bend) O=C-C*

CB@PA-6 3425 
(s) 2930 (s) 1642 

(m)
1539 
(w)

1264 
(w) 1023 (s)

Figure 2: FTIR spectra of (a) CB@PP and (b) CB@PA-6.
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forcement outcomes. Usually, C-C or C-H weak interactions 
are proposed. In most recent studies emphasis is made on the 
physical modes of interactions [24]. So, baes on these interac-
tions it was concluded that the CB of the bamboo plant has 
influenced the thermal stability of PP polymers more effec-
tively compared with PA-6 polymer.

DSC analysis of the samples

Comparative DSC plots of coagulation-processed nano-
composite PP, CB@ PP, PA-6, and CB@PA-6 were inves-
tigated over the temperature range of 50 °C to 400 °C. The 
DSC curves are displayed in figure 5. All the neat polymers 
and their respective nanocomposites presented an endother-
mic peak with a very small difference in the value of melting 
temperature (Tm). There is observed a fall of 1 °C for CB@PP 
and a 6 °C rise in melting temperature of CB@PA-6 com-
pared with their respective neat polymers. It was noticed that 
for CB@PA-6 splitting in the melting peak is observed. The 
obtained data are presented in table 4 for the melting peaks 
(Tm) and magnitude of the heat of melting.

Conclusions
CB@PP and CB@PA-6 nanocomposites were prepared 

using the coagulation method. The structural confirmation 
was achieved by FTIR. It was revealed that mixing CB of the 
bamboo plant could modify the thermal and melting prop-
erties of the neat polymers. The filler has revealed different 
trends of properties in the selected thermoplastic polymers. 
CB has enhanced the thermal stability of PP which is as-
sumed to be superior interaction of filler with the aliphatic 
nonpolar skeleton. PA-6 initially behaved differently because 
it already contains polar bonds in the polymer skeleton. The 
lack of effective incorporation of filler into the PA-6 back-
bone has resulted in a decline in thermal stability for the initial 

losses by decreasing the productive stronger hydrogen bonding 
presented in the neat polymer.

It was evidenced that coagulation processed CB@PP and 
CB@PA-6 have resented comparable values of T50 which lies 
in the range of 435 °C to 461 °C. The maximum degradation 
temperature (Tf) for the two synthesized nanocomposites is 
comparable to the respective neat polymers. A raise in Tf of 
both nanocomposites is noticed at higher weight loss tempera-
tures. There is a rise in Tf of 98 °C for CB@PP compared with 
neat PP resin. An increase in Tf of 92 °C is noticed for CB@
PA-6 compared with neat PA-6. The residual weight (Rf) is 
observed to be greater for CB@PP nanocomposite compared 
with CB@PA-6. The graphic illustration of the comparison of 
residual weights at final degradation is presented in figure 4. 

Literature is available on properties enhancement by filler 
addition using physical and chemical interactions. The physi-
cal interaction involves the physical modification of the matrix 
due to reinforcement influences. It supposes that some kind 
of state of bonding is developed among matrix and carbon 
black whose exact nature is undefined. The second chemical 
consideration relies on the surface chemistry of the polymer 
and carbon black filler. It also works to explain the correlations 
between the category and the number of linkages and rein-

Figure 3: TGA curves of the samples (a) PP and CB@PP, and (b) PA-6 
and CB@PA-6.

Figure 4: Graphic illustration of  thermal stability of nanocomposites in 
terms of residual weight loss.

Table 4: Melting peaks position from DSC.

Compounds PP CB@PP PA-6 CB@PA-6

Tm (°C ) 127.7 126.3 215.2 221.5
Hm (J/g) 174.9 120.3 80.5 57.5
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