Encouraging Submission of Studies Seeing Stem Cell Biology in the Light of Physical Energies and Nanoscale Approaches: Towards a Regenerative Medicine without the Needs for Stem Cell Transplantation

Carlo Ventura*

Stem Wave Institute for Tissue Healing (SWITH), Ettore Sansavini Health Science Foundation, Lugo, Italy

Compelling evidence demonstrate that our cells are able to generate electromagnetic signals [1-5] and mechanical oscillations [6-9], affording essential modulation of cell polarity.

At the level of somatic cells and tissue resident stem cells cell polarity results from, and acts on the modulation of cellular ion fluxes, electric fields, and microtubular dynamics of the cytoskeleton and nucleoskeleton. Cell polarity is crucial in the physiological modulation of stem cell differentiation and aging, as shown by the fact that altered cell polarization invariantly associates with disease, pathological aging and cancer [10-13]. To this end, the cytoskeletal and nucleoskeletal microtubular network form a major dynamic environment to establish and preserve cell polarity.

Using artificial cell-like environment that works as a cavity (a replica of a living cell), within an ad hoc designed setting capable of pumping electromagnetic frequencies to a growing microtubule, in conjunction with scanning tunneling microscopy (STM), it has been possible to detect how different frequencies change the local density of states in the tubulin protein structure [3]. Similarly, STM analyses have shown that single microtubule tunneling “current images” are produced when different resonance frequencies are pumped simultaneously [3]. The frequency region selectivity for engaging particular kinds of conformational changes establishes that pure mechanical changes can be remotely controlled in an atomically precise fashion by using electromagnetic fields remotely.

Compounding the relevance of the microtubular network as an information-transporting- system is the evidence for high-frequency electric field and radiation characteristics from microtubuli [4] and even the detection of multi-level memory-switching properties in a single brain microtubule [5].

DNA itself, considered as an electrically charged vibrational entity, despite its role of storage and expression of genetic information, may conceivably contribute to cell polarity, also by virtue of its continuous assembly in multifaceted loops and domains that are essential features of the nano-mechanics and nano-topography imparted to this macromolecule by the timely intervention of transcription factors and molecular motors. Accordingly, electromagnetic resonance frequency spectra have been detected for DNA, which was found to exhibit electromagnetic resonances in the wide frequency range from THz, GHz, MHz and KHz [14].

Within this context, we have provided evidence that properly conveyed radioelectric fields are able to: (i) modulate the gene transcription of essential growth regulatory peptides in adult myocardial cells [15], (ii) enhance the differentiating potential of mouse embryonic stem cells [16, 17], (iii) induce pluripotency in human adult stem cells, promoting their differentiation into cardiac, neural, skeletal muscle and endothelial cells [18], (iv) afford direct reprogramming towards the same lineages in human somatic cells (dermal fibroblasts) [19], (v) reverse human stem cell aging in vitro [20], (vi) reprogram PC12 cancer cells into dopaminergic neurons [21], and (vii) optimize stem cell polarity [22].

Due to the diffusive nature of electromagnetic fields and mechanical vibrations, the chance is emerging to target and reprogram the stem cells where they are, in all tissues of the body. This strategy will promote our natural ability for selfhealing, affording a regenerative medicine without the needs for stem cell transplantation.

Consonant with this approach, we would like to encourage the submission of novel original research articles, reviews and commentaries seeing stem cell biology in the light of physical energies, using electromagnetic fields, mechanical vibrations and light to maximize the multilineage potential of stem cells, affording their efficient reprogramming with enhanced regenerative capabilities and secretion of trophic mediators for tissue repair. Accordingly, the submission of studies investigating stem cell dynamics within the context of nanoscale technologies and nanotopography assessment are also highly encouraged.

On the whole, we would like to emphasize the needs for studies that may pave the way to a Regenerative Medicine based upon the unfolding of our intrinsic, endogenous regenerative potential.


1. Albrecht-Buehler G. 1992. Rudimentary form of cellular "vision". Proc Natl Acad Sci USA 89(17): 8288-8292.

2. Albrecht-Buehler G. 2005. A long-range attraction between aggregating 3T3 cells mediated by near-infrared light scattering. Proc Natl Acad Sci USA 102(14): 5050-5055. doi: 10.1073/pnas.0407763102

3. Sahu S, Ghosh S, Fujita D, Bandyopadhyay A. 2014. Live visualizations of single isolated tubulin protein self-assembly via tunneling current: effect of electromagnetic pumping during spontaneous growth of microtubule. Sci Rep 4: 7303. doi: 10.1038/srep07303

4. Havelka D, Cifra M, Kučera O, Pokorný J, Vrba J. 2011. High-frequency electric field and radiation characteristics of cellular microtubule network. J Theor Biol 286(1): 31-40. doi: 10.1016/j.jtbi.2011.07.007

5. Sahu S, Ghosh S, Hirata K, Fujita D, Bandyopadhyay A. 2013. Multi-level memory-switching properties of a single brain microtubule. Appl Phys Lett 102: 123701. doi: 10.1063/1.4793995.

6. Pelling AE, Sehati S, Gralla EB, Valentine JS, Gimzewski JK. 2004. Local nanomechanical motion of the cell wall of Saccharomyces cerevisiaeScience 305(5687): 1147-1150. doi: 10.1126/science.1097640

7. Gimzewski JK, Pelling A, Ventura C. 2008. Nanomechanical characterization of cellular activity. International Patent: WO 2008105919 A2.

8. Uzer G, Thompson WR, Sen B, Xie Z, Yen SS, et al. 2015. Cell mechanosensitivity to extremely low-magnitude signals is enabled by a LINCed nucleus. Stem Cells 33(6): 2063-2076. doi: 10.1002/stem.2004

9. Schaap IA, Carrasco C, de Pablo PJ, Schmidt CF. 2011. Kinesin walks the line: single motors observed by atomic force microscopy. Biophys J 100(10): 2450-2456. doi: 10.1016/j.bpj.2011.04.015

10. Florian MC, Geiger H. 2010. Concise review: polarity in stem cells, disease, and aging. Stem Cells 28(9): 1623-1629. doi: 10.1002/stem.481

11. Lee M, Vasioukhin V. 2008. Cell polarity and cancer--cell and tissue polarity as a non-canonical tumor suppressor. J Cell Sci 121(Pt 8): 1141-1150. doi: 10.1242/jcs.016634

12. Wodarz A, Näthke I. 2007. Cell polarity in development and cancer. Nat Cell Biol 9(9): 1016-1024. doi: 10.1038/ncb433

13. Martin-Belmonte F, Perez-Moreno M. 2011. Epithelial cell polarity, stem cells and cancer. Nat Rev Cancer 12(1): 23-38. doi: 10.1038/nrc3169

14. Cosic I, Cosic D, Lazar K. 2015. Is it possible to predict electromagnetic resonances in proteins, DNA and RNA? EPJ Nonlinear Biomedical Physics 3: 5. doi: 10.1140/s40366-015-0020-6

15. Ventura C, Maioli M, Pintus G, Gottardi G, Bersani F. 2000. Elf-pulsed magnetic fields modulate opioid peptide gene expression in myocardial cells. Cardiovasc Res 45(4): 1054-1064. doi: 10.1016/S0008-6363(99)00408-3

16. Ventura C, Maioli M, Asara Y, Santoni D, Mesirca P, et al. 2005. Turning on stem cell cardiogenesis with extremely low frequency magnetic fields. FASEB J 19(1): 155-157. doi: 10.1096/fj.04-2695fje

17. Maioli M, Rinaldi S, Santaniello S, Castagna A, Pigliaru G, et al. 2012. Radiofrequency energy loop primes cardiac, neuronal, and skeletal muscle differentiation in mouse embryonic stem cells: a new tool for improving tissue regeneration. Cell Transplant 21(6): 1225-1233. doi: 10.3727/096368911X600966

18. Maioli M, Rinaldi S, Santaniello S, Castagna A, Pigliaru G, et al. 2014. Radioelectric asymmetric conveyed fields and human adipose-derived stem cells obtained with a non-enzymatic method and device: a novel approach to multipotency. Cell Transplant 23(12): 1489-1500. doi: 10.3727/096368913X672037

19. Maioli M, Rinaldi S, Santaniello S, Castagna A, Pigliaru G, et al. 2013. Radio electric conveyed fields directly reprogram human dermal skin fibroblasts toward cardiac, neuronal, and skeletal muscle-like lineages. Cell Transplant 22(7): 1227-1235. doi: 10.3727/096368912X657297.

20. Rinaldi S, Maioli M, Pigliaru G, Castagna A, Santaniello S, et al. 2014. Stem cell senescence. Effects of REAC technology on telomerase-independent and telomerase-dependent pathways. Sci Rep 4: 6373. doi: 10.1038/srep06373

21. Maioli M, Rinaldi S, Migheli R, Pigliaru G, Rocchitta G, et al. 2015. Neurological morphofunctional differentiation induced by REAC technology in PC12. a neuro protective model for parkinson's disease. Sci Rep 5: 10439. doi: 10.1038/srep10439

22. Maioli M, Rinaldi S, Pigliaru G, Santaniello S, Basoli V, et al. 2016. REAC technology and hyaluron synthase 2, an interesting network to slow down stem cell senescence. Sci Rep 6: 28682. doi: 10.1038/srep28682

*Correspondence to:

Carlo Ventura, MD, PhD
Stem Wave Institute for Tissue Healing (SWITH)
Ettore Sansavini Health Science Foundation
via Provinciale per Cotignola 9
48022 Lugo (RA), Italy
Tel: + 39 0545 904601
Fax: + 39 0545 217327
E-mail: ventura.vid@gmail.com

Received: July 29, 2016
Accepted: August 10, 2016
Published: August 11, 2016

Citation: Ventura C. 2016. Encouraging Submission of Studies Seeing Stem Cell Biology in the Light of Physical Energies and Nanoscale Approaches: Towards a Regenerative Medicine without the Needs for Stem Cell Transplantation. NanoWorld J 2(2): 20-21.

Copyright: © 2016 Ventura. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC-BY) (http://creativecommons.org/licenses/by/4.0/) which permits commercial use, including reproduction, adaptation, and distribution of the article provided the original author and source are credited.

Published by United Scientific Group
© NanoWorld Journal 2016 | United Scientific Group, #8105, Suite 112, Rasor Blvd, PLANO, TX 75024, USA | Terms and Conditions | Privacy Policy