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Abstract
Polymer nanoparticles have gained significant research interest in increasing 

number of fields. Various techniques have been used for the synthesis of polymeric 
nanoparticles including polymerization of monomers as well as dispersion or 
processing of the synthesized polymers. While performing nanoparticle synthesis, 
the resulting particle size, distribution, cost, and end use must be considered 
beforehand. In addition to polymeric nanoparticles, certain hybrid polymeric 
nanoparticles have been prepared. The hybrid polymeric nanoparticles include 
the combination of polymer nanoparticles with other organic or inorganic 
particles such as carbon nanotube, graphene, graphene oxide, carbon black, silica, 
zinc, nickel, and several metal oxide nanoparticles. This review actually covers 
the basics and strategies used for the design of polymer nanoparticles and hybrid 
polymeric nanoparticles. In future, several crucial parameters must be identified 
and improved to design these nanoparticles to attain desired properties for high 
performance applications. 
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Introduction
Although, the arena of polymer nanoparticles is new, it is quickly growing 

and playing an essential role in wide spectrum of applications ranging from 
electronics, devices, and biomedical to environmental technology [1, 2]. The term 
polymeric nanoparticle is collectively used for any type of polymer nanoparticle, 
nanospheres, nanoellipsoids, or other similar nanostructures. The advantageous 
properties and applications of polymeric nanoparticles can be obtained and 
optimized using various preparation techniques. Polymeric nanoparticles can be 
prepared using as prepared polymers or through polymerization of the desired 
monomers. Techniques such as evaporation, precipitation, osmosis, salting out, 
emulsion, and interfacial polymerization have been used for the preparation of 
polymeric nanoparticles [3-5]. The monomer polymerizations through emulsion, 
micro-emulsion, and mini-emulsion are also popular. Thus, these nanoparticles 
can be prepared using polymers and copolymers along with different solvents 
and stabilizers. There have been continuous search efforts for synthesizing 
polymeric nanoparticles with optimum properties using suitable stabilizing agent 
and solvent system. Key properties of polymer nanoparticles depend on particle 
size and the particle size distribution. Hybrid nanoparticles have been prepared 
using polymer nanoparticles and inorganic nanoparticles [6-10]. Efficient hybrid 
nanoparticle interfacial adhesion and uniform dispersion may lead to transparent 
films, coatings, and membranes. However, the fundamental knowledge about the 
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and surfactant/initiator. The difference between the emulsion 
polymerization and mini-emulsion polymerization is basically 
the use of low molecular weight compound as stabilizer. 
Mini-emulsion polymerization needs high-shear to attain 
steady state. The emulsion method may produce colloidal 
polymer particles of high molar mass. Micro-emulsion 
polymerization is also an effective approach for nano-sized 
polymeric nanoparticles. The particle size and average number 
of chains per particle are smaller in this polymerization [17]. 
Table 1 shows the differences among various emulsions 
techniques [18-20]. In typical emulsion polymerization, 
usually water soluble initiator is added to thermodynamically 
stable emulsion. The emulsion possess swollen micelles. These 
particles with monomer and initiator are completely covered 
with the surfactant molecules. The polymer chains are formed 
in the micelles. The emulsions are finally broken due to increase 
in the particle size of micelles.

processes in the preparation of hybrid polymer nanoparticles is 
still limited. The control of size, distribution, and morphology 
of hybrid nanoparticles are not also fully understood. This 
review article examines unique chemical and physical aspects 
of polymer-based nanoparticles. It covers different preparation 
techniques for polymeric nanoparticles and insists parameter 
control such as particle size, particle size distribution, 
surface area, etc. Future direction and opportunities for the 
development of new polymeric and hybrid nanoparticles 
have also been portrayed. Exploration of structure-property 
relationship of polymeric nanoparticles is challenges to open 
new frontier of these materials.

Polymeric Nanoparticles
Nanoparticles can be defined as solid or colloidal 

particles having size in the range 10-100 nm [11]. Polymer 
nanoparticles are usually nanospheres, nanocapsules, or 
oval nanoparticles [12]. The organic molecules or inorganic 
nanoparticles can be adsorbed on nanoparticle surface or 
encapsulated in the particles to form a core-shell structure 
[13]. The size and shape of nanoparticles are of course essential 
to attain improved material properties for various applications 
such as optics, catalysis, electronics, etc. The nanoparticle 
size, size distribution, surface area, and homogeneity are still 
challenging. Polymer nanoparticles have been used as building 
blocks to create mesoscale assemblies. The enhanced inter-
particle interactions and perfect geometric shape are essential 
to develop self-assembled ordered mesoscale structure. The 
polymer nanoparticle assemblies have been used instead of 
inorganic nanoparticles. Different types of polymers have been 
used to form polymeric nanoparticles. Variation in polymer 
architecture and surface functionalization may affect the inter-
particle interactions and final nanoparticle properties. 

Processing of Polymeric Nanoparticles
Polymeric nanoparticles have been prepared using range 

of facile techniques [14]. Figure 1 shows the schematic for the 
preparation of polymer nanoparticles from monomers. Polymer 
can be directly converted to polymeric nanoparticles using 
different techniques such as evaporation, precipitation, salting 
out, dialysis, supercritical fluid technology, etc. On the other 
hand, monomers can be in situ polymerized through emulsion, 
interfacial, and dispersion methods. The polymerization of 
monomers through micro-emulsion, mini-emulsion, and free 
emulsion have found success. Figure 2 shows osmosis method 
for the preparation of polymeric nanoparticles. As the name 
osmosis indicates, it uses a semipermeable membrane as 
physical barrier to the polymer solution [15]. The membrane 
allows passive transport of solvent molecules to control the 
mixing of polymer solution with non-solvent.

Figure 3 shows the expansion of supercritical solution 
in liquid solvent [16]. The nano-sized particles were attained 
through the suppression of particle growth in expansion jet. 
The nanoparticles were collected in solvent, and can be dried 
through solvent evaporation. Figure 4 shows the emulsion 
polymerization method utilizing solvent, monomer, stabilizer, 

Figure 1: Preparation of polymer nanoparticles from monomers.

Figure 2: Schematic of osmosis method for polymer nanoparticles.

Figure 3: Schematic of rapid expansion of supercritical fluid solution.



NanoWorld Journal | Volume 5 Issue 1, 2019

Strategies in Polymeric Nanoparticles and Hybrid Polymer Nanoparticles Kausar.

3

Hybrid Polymeric Nanoparticles
Hybrid polymeric nanoparticles may have ability to 

combine the processability of polymers with mechanical, 
thermal, and optical properties of inorganic nanoparticles. 
The combination of properties may be useful for wide range 
of commercial, engineering, and device applications. In this 
regard, ordered array of silica spheres and polymer nanoparticles 
have been designed. The polymer nanoparticles incorporated 
gold nanospheres have also been designed. Thus, the core-shell 
particles and composite particles have been reported [21-23]. 
The polymeric nanoparticle have also been combined with 
the nanocarbons such as multi-walled carbon nanotube [24-
31]. Graphene and graphene oxide (GO) nanoparticles have 
also been combined with the polymeric nanoparticles to form 
hybrid nanoparticles [32, 33]. Fullerene and nanodiamond 
are also excellent contenders to form combinations with 
the polymers to form hybrid nanoparticles [34-38]. The 
interactions between the polymeric nanoparticles and other 
organic or inorganic nanoparticles must be strengthened 
to avoid aggregation. The physical adsorption of polymers 
nanoparticle on inorganic/organic nanoparticles may lead to 
better dispersion and affect the rheology and viscosity of the 
polymer used. However, physical polymer nanoparticle-other 
nanoparticle interactions can be easily dissolved compared 
with the covalently attached nanoparticles. There have been 
increasing scientific interest in hybrid nanoparticles owing to 
high electrical conductivity, thermal conductivity, strength, 
stiffness, optical, and other physical properties.

Technical Significance and Outlook
From the point of view of materials chemistry, fundamental 

and advances of polymeric nanoparticle materials are essential 
to understand. Manipulation of individual nanoparticles 
and hybrid nanoparticles can be exploited for self-assembly 
procedures. Linear homopolymers have been most preferably 
used to develop polymeric nanoparticles. The liquid crystalline 
polymers and block copolymers also show high aspect ratio 
to promote supramolecular organizations. Hybrid polymeric 
nanoparticles may contribute to the development of future 
optical and electronic devices, engineered products for 

automotive and aerospace, and biomedical applications 
[39-41]. The hybrid polymeric nanoparticles may also be 
useful for coatings [42-46], textiles [47], electromagnetic 
interference (EMI) shielding [48, 49], and sensors [50, 51]. 
In situ generated nanoparticles and nanostructure in cross-
linkable resin have yielded novel systems with improved 
properties. Mascia et al. [52, 53] studied the generation of 
siloxane domains in epoxy network to form epoxy-silica 
hybrids. Amine-silane functional bisphenol-A resin was 
reinforced with siloxane precursor using tetraethoxysilane and 
glycidoxypropyltrimethoxysilane coupling agent. The in situ 
developed hybrids have shown enhanced mechanical properties 
such as modulus, strength, and ductility, at low temperature 
curing. The epoxy-silica hybrids can be employed for uptake 
of water from environment. In another attempt, molybdate 
anions were introduced in epoxy-silica hybrid domains using 
in situ method [54]. Incorporation of molybdate anions in 
epoxy-silica network has enhanced the corrosion protection 
capability of the coatings. Mallakpour and Behranvand [55] 
designed nanoparticles using biodegradable polymers. Owing 
to small size and large surface area, polymeric nanoparticles 
have been employed in application areas such as drug delivery 
systems, biosensors, nanoreactors, and catalysts. Polymeric 
nanoparticles in delivery systems must be biocompatible and 
biodegradable with the living systems in terms of non-toxicity 
and non-antigenicity. Polymeric nanoparticle-based materials 
with unique physical and chemical characteristics are also 
demanding for employment in bio-imaging and diagnostics. 
The main advantage of polymeric and hybrid nanoparticles 
is as composite additives. These nanofillers may have several 
advantageous properties relative to the traditional additives at 
low loading requirements. In this regard, efficient nanoparticle 
dispersion and nanoparticle-nanoparticle interfacial adhesion 
may allow exciting possibilities for developing films, coatings 
and membranes. There are several chemical and physical 
aspects associated with the polymer-based nanoparticles. 
Future directions and opportunities for the development of 
new hybrid materials must be focused. Understanding the 
structure-property relationship of polymer-based nanoparticle 
materials is challenging to discover new frontiers in these 
hybrids.

Summary
The field of polymer nanoparticles is relatively new and 

needs lot of attention on fundamentals as well as advance 
applications of these materials. The review offers not only 
primary information regarding the polymeric and hybrid 
nanoparticles, but also presents the fabrication strategies and 
future prospects of these intriguing polymer nanoparticles. 
Polymer nanoparticle is a state-of-the-art technology which 
demands appropriate monomer or polymer dispersion, 
initiator, surfactant, precipitant, and other optimum process 
conditions for the preparation of small size, high surface area, 
and smooth surface nanoparticles. The controlled parameters 
may definitely lead to the desired property enhancement 
of these nanoparticles. To further enhance the potential 
of polymer nanoparticles, various organic and inorganic 

Figure 4: Representation of emulsion polymerization process.

Table 1: Comparison of emulsion polymerization systems.

Particle size Droplet size Polydispersity

Emulsion <300 nm 1-10 µm Low

Mini-emulsion 10-30 nm <200 nm Very low

Micro-emulsion <100 nm ~10 nm Very low
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nanoparticles have been processed with these nanoparticles. 
The hybrid polymeric nanoparticles can be used for range of 
potential applications where polymers alone are ineffective. 
Future research on the development of polymeric and hybrid 
polymeric nanoparticle should be focused on precise control 
over particle size and morphology for potential relevance. 
Advances may lead to the commercial utilization of polymeric 
nanoparticles for high performance applications.
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